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THE MAXIMAL SPECTRAL RADIUS OF A DIGRAPH WITH
(M + 1)2 − S EDGES∗

JAN SNELLMAN†

Abstract. It is known that the spectral radius of a digraph with k edges is at most
√

k, and
that this inequality is strict except when k is a perfect square. For k = m2 + �, � fixed, m large,
Friedland showed that the optimal digraph is obtained from the complete digraph on m vertices by
adding one extra vertex, a corresponding loop, and then connecting it to the first ��/2� vertices by
pairs of directed edges (for even � an extra edge is added to the new vertex).

Using a combinatorial reciprocity theorem, and a classification by Backelin on the digraphs on
s edges having a maximal number of walks of length two, the following result is obtained: for fixed
0 < s �= 4, k = (m + 1)2 − s, m large, the maximal spectral radius of a digraph with k edges
is obtained by the digraph which is constructed from the complete digraph on m + 1 vertices by
removing the loop at the last vertex together with �s/2� pairs of directed edges that connect to the
last vertex (if s is even, remove an extra edge connecting the last vertex).

Key words. Spectral radius, Digraphs, (0, 1)-matrices, Perron-Frobenius theorem, Number of
walks.
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Digraphs drawn by dot [8].

1. Introduction. By a digraph we understand a finite directed graph with no
multiple edges, but possibly loops. Let G(m, p, q) be the digraph on {1, . . . ,m+ 1},
where there is an edge from i to j if i, j ≤ m or if i ≤ p and j = m+1 or if i = m+1
and j ≤ q. LetM(G(m, p, q)) =M(m, p, q) denote the adjacency matrix ofG(m, p, q);
it is a (0, 1)-matrix with m2 + p + q ones. If Ia,b denotes the a × b matrix with all
ones, and Oa,b the matrix with all zeroes, then

(1.1) M(m, p, q) =

[
Im,m

Ip,1
Om−p,1

I1,q O1,m−q 0

]
.

For 0 < � < 2m + 1, we put M(m, �) = M(m, ��/2�, �− ��/2�), i.e. the M(m, p, q)-
matrix with p + q = �,p ≥ q, p − q minimal. We denote the corresponding digraph
with G(m, �). As an example, G(5, 2, 1) = G(5, 3) is shown in Figure 1.1, and has
adjacency matrix

(1.2) M(5, 2, 1) =M(5, 3) =




1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 0 0 0 0



.
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Fig. 1.1. G(5, 2, 1) = G(5, 3)

Brualdi and Hoffman [2] studied the following question: if the number of ones
in a (0, 1)-matrix A is a specified integer d, give an upper bound for the spectral
radius ρ(A). They showed that when d = m2 or d = m2 + 1 then the maximal
spectral radius ism, and is obtained by the matrixM(m, 0) andM(m, 1), respectively.
They also gave an example, due to Don Coppersmith, which shows that M(3, 3) is
not optimal. For the special case of symmetric (0, 1)-matrices, they determined the
maximal spectral radius when d =

(
m
2

)
(the maximal spectral radius is optained by

the complete graph on d vertices) and gave a conjecture for what happens when

(
m

2

)
< d <

(
m+ 1
2

)
.

This conjecture was later proved by Rowlinson [12]. Friedland [6] showed that for
a fixed � there is an L(�) such that for m ≥ L(�) the maximal spectral radius of a
(0, 1)-matrix with m2 + � ones is achieved by the matrix M(m, �). He conjectured
that for any m, �, 0 < � < 2m+1, the maximal spectral radius of a (0, 1)-matrix with
m2+ � ones is achieved by some (m+1)× (m+1) matrix. For m2+ � = (m+1)2−4,
he showed that the optimal matrix is not M(m, �) but rather

(1.3)
[

Im−1,m−1 Im−1,2

I2,m−1 O2,2

]
.

The counter-example due to Don Coppersmith, mentioned above, is of this type. It is
reasonable to believe that these are the only exceptions and that for other �, M(m, �)
is optimal.

We show a weaker result: for a fixed s 	= 4 there is an S(s) such that form ≥ S(s)
the maximal spectral radius of a digraph with (m+ 1)2 − s edges is achieved by the
digraph G(m, 2m+ 1− s).

Our main tools are the following:
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1. A combinatorial reciprocity theorem by Fröberg [7], Carlitz-Scoville-Vaughan
[5], and Gessel [9], which asserts that for a digraph A, the generating series

(1.4) HA(t) =
∞∑

n=0

χn(A)tn,

of χn(A), the number of walks of length n− 1 in A, is related to the series of
the complementary digraph by HA(t)HĀ(−t) = 1,

2. A classification by Backelin [1] of the digraphs of s edges with maximal num-
ber of walks of length 2.

The proof runs as follows: Backelin’s classification shows that for s > 6, m sufficiently
large, the digraph with the following adjacency matrix has the maximal number of
walks of length 2 among digraphs with s edges and m+ 1 vertices:

(1.5)

[
Om,m

Om−s/2,1
Is/2,1

O1,m−s/2 I1,m−s/2 1

]
.

The generating series for walks in that graph is

1 + (m+ 1)t+ st2 + ct3 +O(t4),

so the generating series for the complementary graph, which has adjacency matrix
M(m, 2m+ 1− s), is

1
1− (m+ 1)t+ st2 − ct3 +O(t4) .

For any other digraph with s edges and m+ 1 vertices, we have that the generating
series is

1
1− (m+ 1)t+ st2 − dt3 +O(t4) ,

with d < c. A perturbation analysis yields that the pole of smallest modulus is
located at m−1 + sm−3 − cm−4 in the first case and at m−1 + sm−3 − dm−4 in the
second, so the first series has smaller radius of convergence, hence faster growth of
the coefficients. Consequently, the first graph has the larger spectral radius.

2. The proof. For any digraph A, let

(2.1) HA(t) =
∞∑

n=0

χn(A)tn,

where χn(A) denotes the number of walks of length n− 1 in A, with the convention
that χ0(A) = 1, χ1(A) = the number of vertices in A, and χ2(A) = the number of
edges in A. Let

(2.2) R(A) =
1

limn→∞ n
√
χn(A)
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be the radius of convergence of HA(t), and let ρ(A) = 1/R(A). If the adjacency
matrix M(A) of A is irreducible then ρ(A) > 0 is the largest eigenvalue of M(A).

For (m + 1)2 − s > m2 + 1, let DI(m, s) denote the finite set of digraphs on
{1, . . . ,m+ 1} having precisely (m+1)2−s edges. Let PDI(m, s) ⊂ DI(m, s) denote
the subset consisting of those digraphs whose (0, 1)-adjacency matrix can be regarded
as the Young diagram of a numerical partition of (m+1)2−s; in other words, the rows
and columns of the adjacency matrix should be weakly decreasing. Then PDI(m, s)
is finite, and the cardinality does not depend on m as long as m is sufficiently large.
Furthermore every digraph in PDI(m, s) is connected in the directed sense, i.e. there
is a directed walk between any two vertices. Hence the adjacency matrix of an element
in PDI(m, s) is by definition irreducible. Furthermore, by a result of Schwarz [13],

(2.3) max { ρ(A) A ∈ DI } = max { ρ(A) A ∈ PDI(m, s) } .
Let Ā denote the complementary graph of A, i.e. the digraph on {1, . . . ,m+ 1}

which has an edge i→ j iff there isn’t an edge i→ j in A. Then the following relation
holds (see the discussion at the end of this article)

(2.4) HA(t)HĀ(−t) = 1.

If A ∈ PDI(m, s), then Ā is a digraph on m+ 1 vertices with s edges. We have that

(2.5) HĀ(t) = 1 + (m+ 1)t+ st2 + ct3 +O(t4)

where c is the number of walks in Ā of length 2.

2.1. The case s > 6. Suppose first that s > 6. Backelin [1] showed that among
all digraphs with s edges, the so-called saturated stars have the maximal number of
walks of length 2. By a saturated star with s = 2k − 1 edges is meant the digraph
with edges (1, i) and (i, 1) for 1 ≤ i ≤ k; for s = 2k we add the edge (1, k+1). So the
saturated stars with 9 and 10 edges looks as in Figure 2.1

1

2 3 4 5

1

2 3 4 5 6

Fig. 2.1. Saturated star digraphs with 9 and 10 edges

Note that if R is a saturated star, then the graph on m+1 vertices, which has an
edge i→ j iff (m+ 2− i)→ (m+ 2− j) is not an edge in R, is of the form G(m, s).
For instance, the digraphs above have adjacency matrices

(2.6)



1 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0


 and




1 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0



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and if we take m = 7 we get the following adjacency matrices for the relabeled
complementary graphs:

(2.7)




1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0
1 1 1 0 0 0 0 0




and




1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0
1 1 0 0 0 0 0 0



.

Now suppose that R is a saturated star, and that A is the digraph on m + 1
vertices obtained from R as above. So Ā and R differ only in that Ā has some
isolated vertices. Let R′ be a a different digraph with s edges. Let B̄ be the digraph
obtained by adjoining isolated vertices, so that the total number of vertices becomes
m+ 1. Let B = ¯̄B. Then

(2.8) HB̄(t) = 1 + (m+ 1)t+ st2 + dt3 +O(t4),

where d is the number of walks in R′ of length 2. By Backelin’s result, c > d. Hence
we have that

HA(t)−HB(t) =
1

1− (m+ 1)t+ st2 − ct3 +O(t4)
− 1
1− (m+ 1)t+ st2 − dt3 +O(t4)

= (c− d)t3 +O(t4)

(2.9)

so we have at once that A has strictly more walks of length 2 than B has. By
induction, we can show that

Lemma 2.1. The exponent of ti in (2.9) is a polynomial in m of degree i − 3,
with leading coefficient (i− 2)(c− d).

Thus, for any j, by taking m sufficiently large, we can achieve that the coefficients
of ti, i ≤ j, in (2.9) are all positive. Recall that PDI(m, s) is finite. Hence, for any
j, if we take m sufficiently large, then A has the maximal number of walks of length
j among the B ∈ PDI(m, s).

In [14] it is shown that if G is a digraph with adjacency matrix M , then HG(t) =
P (t)/Q(t), where Q(t) = det(I−tM), and P (t) is a polynomial of smaller degree then
Q. Hence HĀ(t), HB̄(t), HA(t), HB(t) are all rational functions. Let r = r(m, c) be
the pole of HA(t) that is closest to origin. Then 1/r is the eigenvalue of M of largest
modulus, so from the Perron-Frobenius theorem it follows that if G is connected in
the directed sense then r is a positive real number. Writing

(2.10) HA(t) =
1

1− (m+ 1)t+ st2 − ct3 + t4 b0+b1t+···+bN1 tN1

1+a1t+a2t2+···+aN2 tN2
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we have that r(m, c) is the smallest real root of

(2.11) (1 + a1t+ a2t2 + · · ·+ aN2t
N2)(1 − (m+ 1)t+ st2 − ct3)

+ t4(b0 + b1t+ · · ·+ bN1t
N1) = 0.

We are interested in the asymptotic behavior of r as m→ ∞. As we will show below,
we can expand r(m, c) as a Laurent series in m as

(2.12) r(m, c) = m−1+sm−3−cm−4+(2s2+b0)m−5+(b1−a1b0−5cs)m−6+O(m−7).

Applying similar analysis for the pole r∗(m, d) ofHB(t) that has the smallest modulus,
we get

r(m, c) − r∗(m, d) = −(c− d)m−4 +O(m−5),

so

r(m, c) < r∗(m, d).

Thus, for largem, HA(t) has strictly smaller radius of convergence than HB(t). When
we combine this with Lemma 2.1 we see that by taking m sufficiently large, we can
achieve that HA(t) � HB(t), i.e. that all coefficients of HA(t) are at least the
corresponding coefficients of HB(t). In fact, the inequality is strict for exponents
more than 2.

2.1.1. Perturbation analysis of the positive root. We now show how to
derive the expansion (2.12). Replacing m+ 1 by 1/ε in (2.11), and clearing denomi-
nators, we get

(2.13) (1 + a1t+ a2t2 + · · ·+ aN2t
N2)(ε− t+ εst2 − εct3)

+ εt4(b0 + b1t+ · · ·+ bN1t
N1) = 0.

The unperturbed equation is

(2.14) (1 + a1t+ a2t2 + · · ·+ aN2t
N2)(−t) = 0,

which has a root at t = 0. We introduce the scaling t = εT and get

(2.15) (1 + a1εT + a2ε2T 2 + · · ·+ aN2ε
N2TN2)(ε− εT + ε3sT 2 − ε4cT 3)

+ ε5T 4(b0 + b1εT + · · ·+ bN1ε
N1TN1) = 0

hence

(2.16) (1 + a1εT + a2ε2T 2 + · · ·+ aN2ε
N2TN2)(1 − T + ε2sT 2 − ε3cT 3)

+ ε4T 4(b0 + b1εT + · · ·+ bN1ε
N1TN1) = 0.
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The unperturbed equation is now 1− T = 0. Hence, T = O(1) and T−1 = O(1), so
this is the correct scaling. We make the substitution Y = T − 1 and get

(2.17)[
1 + a1ε(Y + 1) + a2ε2(Y + 1)2 + · · ·+ aN2ε

N2(Y + 1)N2
][−Y + ε2s(Y + 1)2−

ε3c(Y + 1)3
]
+ ε4(Y + 1)4(b0 + b1ε(Y + 1) + · · ·+ bN1ε

N1(Y + 1)N1) = 0.

It is now clear that Y can be expanded in powers of ε, so we make the Ansatz

(2.18) Y =
∞∑

i=1

wiε
i.

Collecting the coefficients of the powers of ε in (2.17) we have

1 : 0(2.19)
ε : − w1(2.20)
ε2 : s− a1w1 − w2(2.21)
ε3 : 2sw1 + a1s− c− a1w

2
1 − a1w2 − a2w1 − w − 3(2.22)

ε4 : 2sw2 + sw2
1 − 3cw1 − a1c+ a2s(2.23)

+ 3a1sw1 + b0 − 2a1w1w2 − a1w3 − 2a2w
2
1 − a2w2 − a3w1 − w4.(2.24)

These should be zero, which allows us to solve for the wi’s, obtaining

(2.25) w1 = 0, w2 = s, w3 = −c, w4 = 2s2 + b0.

So

(2.26) Y = sε2 − cε3 + (2s2 + b0)ε4 +O(ε5),

hence

(2.27) T = 1 + sε2 − cε3 + (2s2 + b0)ε4 +O(ε5),

hence

(2.28) t = ε+ sε3 − cε4 + (2s2 + b0)ε5 +O(ε6).

This concludes the proof for the case s > 6.

2.2. The exceptional cases. It remains to take care of the case s ≤ 6. Back-
elin’s classification says that if s ∈ {1, 3, 5}, then the saturated stars are optimal.
Hence, it remains to check the cases s = 2, s = 4, s = 6.
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2.2.1. s = 2. For s = 2 there are two non-isomorphic graphs R, namely

1

2

1

2

corresponding to matrices M1 =
[

1 1
0 0

]
and M2 =

[
0 1
1 0

]
. Recall that when M1 or M2

is subtracted from the bottom right corner of the (m+1)× (m+1) matrix of all ones,
the result should be weakly decreasing in rows and columns. We call the resulting
matrices

(2.29) A1 =



1 · · · 1 1 1
...

...
...

...
...

1 · · · 1 1 1
1 · · · 1 0 0


 and A2 =



1 · · · 1 1 1
...

...
...

...
...

1 · · · 1 1 0
1 · · · 1 0 1


 .

The matrix A2 is not weakly decreasing in the last row, so it is not really necessary to
continue with the calculations, but we proceed anyway in order to demonstrate how
this is done. We have that

(2.30) HM1(t) = HM2(t) =
1 + t
1− t ,

so that

(2.31) HA1(t) = HA2(t) =
1

1−t
1+t −m+ 1

=
1 + t

1− tm− (m− 1)t2
.

The smallest positive root of the denominator is

(2.32)
−m+

√
m2 + 4m− 4

2(m− 1)
,

so the spectral radius is

(2.33)
2(m− 1)

−m+
√
m2 + 4m− 4

.

2.2.2. s = 4. From Backelin’s classification we have that for s = 4, the digraph

1

2

with adjacency matrix
[

1 1
1 1

]
has the most walks of length 2. This is in accordance

with [6] where it is shown that the matrix (1.3) has maximal spectral radius among
(0, 1)-matrices with (m+ 1)2 − 4 ones.
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1

2 3 4

1

2 3

Fig. 2.2. Digraphs with 6 edges having maximal number of walks of length 2

2.2.3. s = 6. The remaining exceptional case in Backelin’s classification is for
s = 6. Then the digraphs in Figure 2.2, with adjacency matrices

(2.34) M1 =



1 1 1 1
1 0 0 0
1 0 0 0
0 0 0 0


 , M2 =


1 1 1
1 1 0
1 0 0




both have 14 of walks of length 2. Note that the first digraph is a saturated star. The
relabeled complemented matrices are

(2.35) A1 =




1 · · · 1 1 1 1 1
...

...
...

...
...

...
...

1 · · · 1 1 1 1 1
1 · · · 1 1 1 1 0
1 · · · 1 1 1 1 0
1 · · · 1 0 0 0 0



, A2 =




1 · · · 1 1 1 1
...

...
...

...
...

...
1 · · · 1 1 1 1
1 · · · 1 1 1 0
1 · · · 1 1 0 0
1 · · · 1 0 0 0



.

The generating series for the complemented relabeled digraphs are

HA1(t) =
1 + t− 2t2

1−mt−mt2 + 3t2 + 2mt3 − 6t3
=:
p1(t)
p2(t)

(2.36)

HA2(t) =
1 + 2t− t2 − t3

1 + t−mt+ 3t2 − 2mt2 − 2t3 +mt3 − 2t4 +mt4
=:
q1(t)
q2(t)

.(2.37)

Regarding the positive root of p2(t) as a function of m, and expanding that function
as a power series about infinity, we get

r1(m) := m−1 −m−2 + 7m−3 − 33m−4 + 191m−5 +O(m−6),

whereas the expansion of the positive root of q2(t) is

r2(m) := m−1 −m−2 + 7m−3 − 33m−4 + 196m−5 +O(m−6).

The first root is therefore slightly smaller for large m; the difference is miniscule, but
vive la différence! In fact, since r1(m) − r2(m) < 0 for large m, and r1(4) − r2(4) ≈
−0.003, it will suffice to show that p2(t) = q2(t) = 0 has no solution to demonstrate
that r1(m) − r2(m) < 0 for m ≥ 4, as shown in Figure 2.3. Using Macaulay 2 [10]
we can verify that {1} is a Gröbner bases for the ideal generated by {p2(t), q2(t)} in
Q(m)[t]. Hence p2(t), q2(t) are co-prime in Q(m)[t], so they can not have a common
zero.
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Fig. 2.3. Difference r1(m) − r2(m) for 4 ≤ m ≤ 10.
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2.3. A note on the relation HA(t)HĀ(−t) = 1. The relation (2.4) was proved
by Carlitz, Scoville and Vaughan in 1976 [5]. Gessel, in his PhD thesis [9], proved a
sharper version, counting the number of walks starting in a specified subset of the set
of vertices. Nice expositions of this are [4] and [3].

However, already in 1975 Fröberg [7] had showed that if R = C〈x1, . . . , xn〉/I,
where C〈x1, . . . , xn〉 is the free associate algebra on x1, . . . , xn, and I is an ideal gen-
erated by monomials of degree 2, J the ideal generated by those quadratic monomials
not in I, R′ = C〈x1, . . . , xn〉/J , HR(t) the Hilbert series of the graded algebra R and
HR′(t) the Hilbert series of R′, then

(2.38) HR(t)HR′(−t) = 1.

If G is a digraph on {1, . . . , n}, then taking I to be the ideal generated by xixj for
all i, j such that i→ j is not a directed edge in G, we recover (2.4).

More abstractly, since the ring R′ is the Koszul dual of R, (2.38) follows. This
point of view is explored by Reiner in [11].
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