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BOUNDS FOR GRAPH EXPANSIONS VIA ELASTICITY∗

M. NEUMANN† AND N. ORMES‡

Abstract. In two recent papers, one by Friedland and Schneider, the other by Förster and
Nagy, the authors used polynomial matrices to study the effect of graph expansions on the spectral
radius of the adjacency matrix. Here it is shown that the notion of the elasticity of the entries of
a nonnegative matrix coupled with the Variational Principle for Pressure from symbolic dynamics
can be used to derive sharper bounds than existing estimates. This is achieved for weighted and
unweighted graphs, and the case of equality is characterized. The work is within the framework of
studying measured graphs where each edge is assigned a positive length as well as a weight.
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1. Introduction. In two recent papers Förster and Nagy [6] and Friedland and
Schneider [7] consider the effect of an expansion of unweighted and weighted directed
graphs, respectively, on the spectral radius of its adjacency matrix. A graph expansion
is obtained from a given graph when an edge is replaced by a path. One of the key
results is that the spectral radius strictly decreases under such an operation on an
unweighted irreducible graph.

The Perron–Frobenius theory does not directly apply in this situation since one is
comparing spectral radii of adjacency matrices of different sizes. However, as demon-
strated in [7] and [6], one can write equal size adjacency matrices for a graph and its
expansion if one allows polynomial entries in the matrix. Polynomial matrices have
also arisen as important tools for realization and classification problems in symbolic
dynamics; see [1, 3, 8].

More formally, let G = (V , E) be an irreducible directed graph with a finite vertex
set V and a finite edge set E (we allow for multiple edges between two vertices). Let
w : E → R

+ (for X ⊂ R, we use the notation X+ to denote the set of elements of
X which are strictly positive). We call the function w a weight function and the pair
(G,w) a weighted graph. Let W = (w(i, j)) be the adjacency matrix for (G,w), i.e.,
w(i, j) is the sum of weights of edges from vertex i to vertex j. Now suppose that
for each edge e ∈ E , we assign a positive integer α(e) and modify the graph by the
following process: introduce α(e) − 1 new vertices to the graph, remove the edge e
and replace e with a path P(e) of length α(e) which originates at the initial vertex of
e, passes through the α(e) − 1 new vertices, and ends at the terminal vertex of e. If
we assign the weight of w(e) to the first edge in P(e) and 1 to all others, we obtain a
new weighted graph which we will denote (Gα, wα).
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Förster and Nagy show that if m = minα(e) and M = maxα(e), then ρ(Gα, wα),
the spectral radius of the weighted graph adjacency matrix for the graph expansion,
lies between the numbers ρ(G,w)1/m and ρ(G,w)1/M [6, Proposition 3.1] (this is the
weighted graph version of Friedland and Schneider [7, Corollary 3.7]). The main goal
of this paper is to refine these inequalities. Of particular interest is the case where
only a single edge is expanded, a situation where the bounds in [6, 7] are generally
not sharp.

We achieve our results through the use of a symbolic dynamic characterization of
the spectral radius of an irreducible matrix and using the notion of the elasticity of
the Perron root of A with respect to the (i, j)–th entry which is the quantity given
by

ei,j(A) =
A(i, j)
ρ(A)

∂ρ(A)
∂A(i, j)

. (1.1)

We comment that it is known (see De Kroon, Plaisier, van Groenendael, and Caswell
[5] and Caswell [4]) that

n∑
i,j=1

ei,j(A) = 1.

Thus all our bounds turn out to include a weighted sum over edges of contributions
to the spectral radius for the graph expansion (see, for instance, (3.7) and (3.8)). We
are also able to characterize the situation where our bounds are sharp.

For this work it is convenient for us to associate a length function α : E → R
+

with a weighted graph (G,w) and consider the triple G = (G,w, α). We will call
such a triple a measured graph and we define the spectral radius of any such object
(Definition 3.4). When α is a positive integer valued function, ρ(G,w, α) coincides
with ρ(Gα, wα), the spectral radius of the adjacency matrix for a graph expansion
(Theorem 3.7). As such we are able to obtain results about graph expansions as
special cases of results on measured graphs.

In our new terminology, both [6] and [7] consider limn→∞ ρ(G,w, αn) where {αn}
is a sequence of length functions on G, where αn → ∞ on some subgraph G′ ⊂ G.
It is just as natural for us to consider the inverse situation, namely, the behavior of
limn→∞ ρ(G,w, αn), where {αn} is a sequence of length functions tending to zero on
a subgraph of G.

The outline of the paper is as follows. In Section 2 we state and prove a version
of the Variational Principle for Pressure, which involves elasticities of the entries of
irreducible nonnegative matrices. In Section 3 we apply our version of the Variational
Principle for Pressure and establish bounds on the change in spectral radius induced
by a change in the length function for an irreducible measured graph. As a conse-
quence, our results sharpen bounds from [6, 7] on the change in spectral radius arising
from a graph expansion (Subsection 3.1). In Subsection 3.2 we examine the special
case of the expansion of a single edge. In Subsection 3.3 we study limiting behavior
of spectral radii with decreasing sequences of length functions.
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2. The Variational Principle for Pressure. In this section we apply a the-
orem from topological dynamics to obtain a lower bound on the quotient of spectral
radii of two nonnegative irreducible matrices (Theorem 2.2). We first recall the follow-
ing fact about elasticity which follows, for example, from Stewart [12, Exer.1, p.305],
when it is applied to the definition of elasticity as given in (1.1):

Proposition 2.1. Let A be an n × n nonnegative irreducible matrix. Let
u = (u(1), u(2), . . . , u(n)) and v = (v(1), v(2), . . . , v(n))T be left and right Perron
eigenvectors of A, respectively. Then

ei,j(A) =
u(i)A(i, j)v(j)

ρ(A)uv
.

Next we state the main theorem of this section, which follows easily from the
Variational Principle for Pressure applied to shifts of finite type in dynamical systems
(see Parry and Tuncel [11] or Walters [13] for an introduction). The version below is
only modified slightly from the version appearing in the paper of Kirkland, Neumann,
Ormes, and Xu [9]. We mention that for an n× n nonnegative matrix A, the matrix
sgn(A) below is the n× n (0, 1)–matrix in which sgn(A)(i, j) = 1 ⇔ A(i, j) > 0.

Theorem 2.2. Let A and B be n × n nonnegative irreducible matrices with
sgn(B) = sgn(A). Then

log(ρ(B)) ≥ log(ρ(A)) +
∑

A(i,j)>0

log
(
B(i, j)
A(i, j)

)
ei,j(A). (2.1)

Moreover, the following are equivalent:
(i) Equality holds in (2.1).
(ii) B = cDAD−1, for some scalar c > 0 and positive diagonal matrix D.
(iii) ei,j(A) = ei,j(B), for all 1 ≤ i, j ≤ n.

Proof. Let C be any nonnegative, irreducible matrix. Let MC denote the set
of all stochastic matrices P with sgn(P ) = sgn(C). The Variational Principle for
Pressure implies

log(ρ(C)) = sup
P∈MC

∑
C(i,j)>0

ei,j(P ) log
(
C(i, j)
P (i, j)

)
. (2.2)

(An equivalent formulation appears in [9, Theorem 3.1].)
Furthermore, one can easily check that the supremum in equation (2.2) is achieved

at the stochastic matrix PC where

PC(i, j) = ρ(C)−1C(i, j)v(j)/v(i)

and v = [v(1), . . . , v(n)]T is a right Perron vector for C.
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Now, since sgn(A) = sgn(B), we have that PA ∈ MB and hence

log(ρ(B)) ≥
∑

B(i,j)>0

ei,j(PA) log
(
B(i, j)
PA(i, j)

)

=
∑

A(i,j)>0

ei,j(PA) log
(
B(i, j)
A(i, j)

)
+

∑
A(i,j)>0

ei,j(PA) log
(
A(i, j)
PA(i, j)

)

= log ρ(A) +
∑

A(i,j)>0

ei,j(PA) log
(
B(i, j)
A(i, j)

)
.

(2.3)

Using Proposition 2.1, we see that ei,j(PA) = ei,j(A), for all 1 ≤ i, j ≤ n, and the
main inequality (2.1) is established.

Turning next to the case of equality, we refer to [11, Theorem 25] for the following
fact: For any irreducible matrix C, if the supremum in (2.2) is achieved at a stochastic
matrix P , then P = PC . Therefore equality in (2.1) is achieved if and only if PA = PB .

Assume now that PA = PB. Let v and w be right Perron eigenvectors for A and
B, respectively. Then for all pairs i, j:

A(i, j)v(j)
ρ(A)v(i)

=
B(i, j)w(j)
ρ(B)w(i)

.

Let c = ρ(B)/ρ(A) and let D = D1(D2)−1, where D1 is diagonal matrix with
D1(i, i) = v(i) and D2 is a diagonal matrix with D2(i, i) = w(i). Then one can
compute cDAD−1 = B and therefore (i) implies (ii).

Now assume that B = cDAD−1, for some scalar c > 0 and a positive diagonal
matrix D. Then c = ρ(B)/ρ(A). Let u and v be left and right Perron eigenvectors
for A, respectively. Then uD−1 and Dv are left and right Perron eigenvectors for B,
respectively. Since B(i, j) = cD(i, i)A(i, j)D(j, j)−1, for all 1 ≤ i, j ≤ n, it follows
from Proposition 2.1 that ei,j(A) = ei,j(B). Therefore (ii) implies (iii).

Finally, assume that ei,j(A) = ei,j(B), for all i, j. Then, by reversing the roles of
A and B in inequality (2.1), we obtain

log(ρ(A)) ≥ log(ρ(B)) +
∑

A(i,j)>0

log
(
A(i, j)
B(i, j)

)
ei,j(B). (2.4)

Now using ei,j(A) = ei,j(B), we obtain

log(ρ(A)) ≥ log(ρ(B)) +
∑

A(i,j)>0

log
(
A(i, j)
B(i, j)

)
ei,j(A)

= log(ρ(B)) −
∑

A(i,j)>0

log
(
B(i, j)
A(i, j)

)
ei,j(A).

(2.5)

This is precisely the reverse of the inequality (2.1). Therefore (iii) implies (i).
Below is one more property of elasticity that will be useful to us in the subsequent

section.
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Proposition 2.3.
Let A be an n× n nonnegative and irreducible matrix. Let k, l,m be fixed indices

such that A(i, l) > 0 if and only if i = k, and A(l, j) > 0 if and only if j = m. Then
ek,l(A) = el,m(A).

Proof. Let u = (u(1), u(2), . . . , u(n)) and v = (v(1), v(2), . . . , v(n))T be left and
right Perron eigenvectors for A, respectively. Then we have that

ρ(A)u(l) =
n∑

i=1

u(i)A(i, l) = u(k)A(k, l)

and

ρ(A)v(l) =
n∑

j=1

A(l, j)v(j) = A(l,m)v(m).

Therefore,

ek,l(A) =
u(k)A(k, l)v(l)

ρ(A)uv
=

u(l)v(l)
uv

and

el,m(A) =
u(l)A(l,m)v(m)

ρ(A)uv
=

u(l)v(l)
uv

.

3. Graph Expansions And The Spectral Radius. The main goal of this
section is to refine bounds on changes in spectral radii arising from graph expansions
on irreducible matrices. First we review some preliminaries and remark that Theorem
2.2 has a direct interpretation in terms of changes in spectral radii corresponding to
changes in weighting functions for a directed graph.

Let G = (V , E) be an irreducible directed graph and let w : E → R
+ be a weight

function. Note that the graph G need not be simple, i.e., there may be more than one
edge from one vertex to another. Let w(i, j) denote the sum of the weights of edges
from vertex i to vertex j and let W = (w(i, j)) be the usual adjacency matrix of the
weighted graph (G,w). We define ρ(G,w) = ρ(W ).

Given two different weighting functions w,w′ : E → R
+, Theorem 2.2 offers the

following bound on differences in the spectral radii of (G,w) and (G,w′).
Corollary 3.1. Let G be an irreducible directed graph and let w,w′ be two

weight functions on the edges in G. Then

log(ρ(G,w′)) ≥ log(ρ(G,w)) +
∑

w(i,j)>0

[log(w′(i, j)) − log(w(i, j))] ei,j(W ).

In particular,

∏
w(i,j)>0

(
w′(i, j)
w(i, j)

)ei,j(W )

≥ 1 =⇒ ρ(G,w′) ≥ ρ(G,w).
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The converse of this statement fails as the following example shows.

Example 3.2. Let V = {1, 2}, let W =
(

1 1
1 1

)
, and W ′ =

(
1/3 2
1 1

)
.

The elasticity of W is a constant; ei,j(W ) = 1/4, for 1 ≤ i, j ≤ 2. Therefore,∏(
w′(i,j)
w(i,j)

)ei,j(W )

=
(

2
3

)1/4
< 1, but ρ(W ′) = (2 +

√
19)/3 > 2 = ρ(W ).

Next we consider the effect of changes of the lengths of edges in an irreducible
graph. That is, we will study graph expansions which are essentially the same as those
in [6]. The only difference being that two different edges from i to j may be replaced
by two paths of the same length here. It will be convenient for us to consider, at least
formally, a more general situation, and then apply results to graph expansions and
their inverses. Let (G,w) be a weighted graph. Consider a map α : E → R

+ which we
will call a length function. We will call the triple G = (G,w, α) a measured graph. We
define the adjacency matrix of a measured graph G to be the matrix A(t) of functions
of t, where A(t)(i, j) =

∑
e∈[i,j] w(e)tα(e) and [i, j] denotes the set of all edges in E

which have initial vertex i and terminal vertex j.
Remark 3.3. In the case where the length of each edge is 1, i.e., α ≡ 1, A(t) is

the usual adjacency matrix for the weighted graph (G,w), multiplied by the scalar t.
Definition 3.4. The spectral radius of a measured graph G = (G,w, α), which we

denote ρ(G), is the reciprocal of the smallest positive root of the function det(I−A(t)),
where A(t) is the adjacency matrix for G.

An immediate consequence of this definition is the following statement:
Proposition 3.5. Let G be an irreducible measured graph. Then ρ(G) is the

reciprocal of the unique positive real number t for which ρ(A(t)) = 1.
We remark that there are several special cases of this setup which correspond to

established notions. For example, in the case where α ≡ 1, ρ(G) is the usual spectral
radius of the weighted graph (G,w), i.e., ρ(G,w, 1) = ρ(G,w). Further, if A(t) is the
adjacency matrix for any measured graph (G,w, α), ρ(A(1)) = ρ(G,w).

Theorem 3.7 below is the key observation. There we show that if α maps the edge
set into the positive integers, then ρ(G,w, α) is equal to ρ(Gα, wα), where (Gα, wα)
is the weighted graph expanded by the function α as defined in [6, 7]. We include
proofs here for completeness, but the arguments are inherent in [6, 7] and versions
can be found in many works in symbolic dynamics; for example, see the survey paper
[2]. The proof follows from Lemma 3.6 below.

Lemma 3.6. Suppose A is an n × n nonnegative matrix and i0, i1, . . . , im+1 are
indices such that

• for all j = 1, 2, . . . ,m, A(ij , l) > 0 if and only if l = ij+1,
• for all j = 0, 1, . . . , (m− 1), A(k, ij+1) > 0 if and only if k = ij.

Let B be the matrix (n −m) × (n −m) matrix which is obtained from A by deleting
the rows and columns with indices i1, i2, . . . , im and adding the product

A(i0, i1)A(i1, i2) · · ·A(im, im+1)

to the (i0, im+1) entry. Then

det(I −A) = det(I −B).
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Proof. Let i = i0 and j = im+1. We will assume that for k = 1, 2, . . . ,m,
ik = n −m + k (this is true up to a permutation of A). That is, we assume A is of
the form

A =
(
X Y
Z V

)
,

where X is the matrix A with rows and columns i1, i2, . . . , im deleted, Y is the (n−
m) ×m matrix with A(i, i1) in the (i, 1) position and zeros elsewhere, Z is the m×
(n − m) matrix with A(im, j) in the (m, j) position and zeros elsewhere, V is the
m ×m superdiagonal matrix with elements of the form A(ik, ik+1) in the (k, k + 1)
entries and zeros elsewhere. We perform the following sequence of operations on the
matrix I −A:

1. Multiply the imth row by A(im−1, im) and add the result to the im−1th row.
2. Multiply the im−1th row by A(im−2, im−1) and add the result to the im−2th

row.
...

3. Multiply the i1th row by A(i0, i1) and add the result to the i0th row.
The result is a matrix of the form (

I − B 0
−Z ′ I

)
,

where B(k, l) = X(k, l) for all (k, l) except for (k, l) = (i, j) and where

B(i, j) = X(i, j) +A(i, i1)

[
m−1∏
k=1

A(ik, ik+1)

]
A(im, j).

The matrix B is as described and since I−B was produced by elementary operations
on I −A, we have that det(I −A) = det(I −B).

Theorem 3.7. Let G = (V , E) be an irreducible directed graph with a weight
function w : E → R

+. Suppose α : E → Z
+ and that (Gα, wα) is the graph expansion

on G corresponding to α as defined in [6, 7]. Then ρ(G,w, α) = ρ(Gα, wα).
Proof. Let (G,w) be a weighted graph, and let α be a map from the edges to the

positive integers. In [6, 7] the expansion graph (Gα, wα) replaces each edge e from G
with a path P(e) of length α(e) beginning at the initial vertex of e, passing through
α(e) − 1

new vertices, and ending at the terminal vertex of e. The first edge in P(e) is
assigned weight w(e), all other edges in P(e) are assigned weight 1.

Let i denote the initial vertex of P(e), let i1, i2, . . . , iα(e)−1 denote the α(e) − 1
new vertices of the graph and let j denote the terminal vertex of P(e). Let t be any
real number. Then the matrix Wαt along with the indices i, i1, i2, . . . , iα(e)−1, j satisfy
the hypotheses of Lemma 3.6. Therefore, we may delete the rows and columns of Wαt
with indices i1, i2, . . . , iα(e)−1, and add w(e)tα(e) to the (i, j) entry and the result is
a matrix A(t) where det(I −A(t)) = det(I −Wαt).
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Repeating this for all edges e in G, we see that if A(t) is the adjacency matrix of
the measured graph (G,w, α), then det(I−A(t)) = det(I−Wαt). Since the reciprocal
of the smallest real root of the equation det(I −Wαt) = 0 is equal to ρ(Gα, wα), we
have that ρ(G,w, α) = ρ(Gα, wα).

In order to obtain some of our bounds we need to be able to define a length
function which reverses the process of graph expansion. We establish the existence of
this length function below. The proof also follows from Lemma 3.6.

Theorem 3.8. Let G = (V , E) be an irreducible directed graph with a weight
function w : E → R

+. Suppose α : E → Z
+ and that (Gα, wα) is the graph expansion

on G corresponding to α as defined in [6, 7]. Then there is a length function β such
that ρ(Gα, wα, β) = ρ(G,w).

Proof. Every edge e ∈ E gives rise to a path of edges P(e) in Gα = (Vα, Eα),
where the length of P(e) is α(e). Further, each edge f ∈ Eα belongs to a unique
path P(e) where e ∈ E . We define a length function β on Gα by β(f) = 1/α(e) for
f ∈ P(e).

Let B(t) be the adjacency matrix for (Gα, wα, β). Let e be an edge in G and let
f1, f2, . . . , fα(e) be the edges forming the path P(e) in Gα. Let i0, i1, . . . , iα(e) denote
the vertices which the path P(e) passes through. Then the matrix B(t) with the
indices i0, i1, . . . , iα(e) satisfy the hypotheses of Lemma 3.6. Therefore we may delete
the columns and rows corresponding to i1, i2, . . . , iα(e)−1, and add the product from
k = 0 to α(e) − 1 of the (ik, ik+1) entries of B(t) to the (i0, iα(e)) entry of B(t). The
result will be a matrix C(t) with det(I−B(t)) = det(I−C(t)). Note that the product

α(e)−1∏
k=0

B(t)(ik, ik+1) =
α(e)∏
k=1

wα(fk)t1/α(e) = w(e)t.

If we repeat this process for all edges e in G, the result will be a matrix which has in
the (i, j) entry the sum of the weights of edges e from i to j multiplied by t. That
is, we will have the (i, j) entry of Wt. Since det(I −Wt) = det(I − B(t)), we have
ρ(G,w) = ρ(Gα, wα, β).

Our estimates of the spectral radius of a measured graph will involve the elastic-
ities of the matrix W . To be more specific, it will involve the elasticity of the edges
in a graph, a notion which is defined below.

Definition 3.9. Let G = (V , E) be a directed graph, and let w : E → R
+ be a

weight function. For e ∈ E , define µ(e), the elasticity of e, by

µ(e) = ei,j(W )w(e)/w(i, j),

where e is an edge from vertex i to vertex j.
Remark 3.10. The elasticity ei,j(W ) is w(i, j)/ρ(W ) times the derivative of

ρ(W ) with respect to w(i, j). Similarly, for e ∈ E ,

µ(e) =
w(e)
ρ(W )

∂ρ(W )
∂w(e)

.

Furthermore, we retain the identity,
∑

e∈Eµ(e) = 1.
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Theorem 3.11. Let G = (V , E) be an irreducible directed graph and let G =
(G,w, α) be a measured graph. Then

log(ρ(G)) ≥ log(ρ(G,w))∑
e∈E α(e)µ(e)

. (3.1)

Proof. Let A(t) be the adjacency matrix for the measured graph G. Let W =
(w(i, j)). Applying Theorem 2.2 to the matrices A(t) and Wt we see that for any
t > 0,

log(ρ(A(t))) ≥ log(ρ(Wt)) +
∑

w(i,j)>0

log
(
A(t)(i, j)
w(i, j)t

)
ei,j(W ). (3.2)

Next we note that

A(t)(i, j)
w(i, j)t

=
∑

e∈[i,j]

w(e)
w(i, j)

tα(e)−1

and, since
∑

e∈[i,j] w(e) = w(i, j), we have that

log
(
A(t)(i, j)
w(i, j)t

)
≥

∑
e∈[i,j]

w(e)
w(i, j)

(α(e) − 1) log(t). (3.3)

Substituting this expression into inequality (3.2) we obtain

log(ρ(A(t))) ≥ log(ρ(Wt)) +
∑
e∈E

µ(e)(α(e) − 1) log(t)

= log(ρ(W )) +
∑
e∈E

µ(e)α(e) log(t).
(3.4)

Setting t = 1/ρ(G), we now have

0 ≥ log(ρ(W )) −
∑
e∈E

µ(e)α(e) log(ρ(G)). (3.5)

Upon rearranging, we get

log(ρ(G)) ≥ log(ρ(G,w))∑
e∈E α(e)µ(e)

,

which is the desired inequality.
The case of equality in the previous theorem is discussed below.
Theorem 3.12. Let G = (G,w, α) be an irreducible measured graph. We have

equality in equation (3.1) if and only if ρ(G,w) = ρ(G) = 1 or there exist constants
k, δ1, δ2, . . . , δn > 0 such that for all e ∈ [i, j], α(e) = k + δi − δj. In this case,
k =

∑
e∈E α(e)µ(e).
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Proof. If ρ(G) = 1, it is clear that we have equality in equation (3.1) if and only
if ρ(G,w) = 1. Assume for the remainder of the proof that ρ(G) �= 1.

First note that equality in (3.1) is derived from the case of equality in (3.2) (at
least when t = 1/ρ(G)) and (3.3). Inequality (3.3) is a property of logarithms, equality
here occurs if and only if e, e′ ∈ [i, j] implies that α(e) = α(e′).

Assume that α(e) = k + δi − δj , for all e ∈ [i, j], as in the statement of the
theorem. Then we have equality in (3.3). Let α(i, j) = α(e), for e ∈ [i, j]. Then for
any t > 0,

α(i, j) log(t) = (k + δi − δj) log(t)

or

tα(i,j) = tktδi/tδj .

Let D(t) be the diagonal matrix with D(t)(i, i) = tδi . It follows that

A(t) = tk−1D(t)(Wt)(D(t))−1.

By Theorem 2.2, this implies that there is equality in (3.2) for any t > 0. Coupled
with equality in (3.3), we obtain equality in (3.1).

Now assume there is equality in equation (3.1). Then we have equality in (3.3)
which means that e, e′ ∈ [i, j] implies that α(e) = α(e′). Thus we may set α(i, j) =
α(e), for e ∈ [i, j].

Theorem 2.2 implies that A(1/ρ(G)) = cD(Wρ(G)−1)D−1, for some scalar c > 0
and a positive diagonal matrix D. The equation above means that for all 1 ≤ i, j ≤ n,

w(i, j)(ρ(G))−α(i,j) =
cD(i, i)w(i, j)
ρ(G)D(j, j)

.

Taking logarithms and rearranging, we obtain

(1 − α(i, j)) log(ρ(G)) = log c+ log(D(i, i)) − log(D(j, j)). (3.6)

Let k = 1 − log c/ log(ρ(G)) and let δi = log(D(i, i))/ log(ρ(G)), for 1 ≤ i ≤ n. The
equality α(i, j) = k + δi − δj , for all 1 ≤ i, j ≤ n, now follows.

We may assume that all of the δi are positive since adding a single constant to
all of the δi’s does not affect the value of δi − δj . It follows from the definition of
c that c = ρ(G)/ρ(W ). Therefore, we see that k = log(ρ(W ))/ log(ρ(G)). Since we
are assuming equality in Theorem 3.11, we have that k =

∑
w(i,j)>0 α(i, j)ei,j(W ) =∑

e∈E µ(e)α(e).
The formalism we have developed in this section can now be directly applied to

the situation of graph expansions as studied in [6, 7].

3.1. Weighted graph expansions. First we consider an irreducible measured
graph G = (G,w, α), where G = (V , E) and α : E → Z

+. Then there is a graph
Gα = (Vα, Eα) and a weight function wα associated with G as defined in [6, 7]. In
this situation we will say that α is an expansion of the weighted graph (G,w) and
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(Gα, wα) is the weighted expansion graph. Recall that we showed in Theorem 3.7 that
ρ(G,W,α) = ρ(Gα, wα).

Theorem 3.11 allows us to obtain a finer estimate on ρ(Gα) than in [6] as follows:
Corollary 3.13. Let (G,w) be an irreducible weighted graph and (Gα, wα) be

a weighted expansion graph. Then

log(ρ(Gα, wα)) ≥ log(ρ(G,w))∑
e∈E µ(e)α(e)

. (3.7)

To obtain an upper bound we will reverse the roles of the graph and the expansion
graph. Suppose that α is an expansion of a weighted graph (G,w) and that (Gα, wα)
is the resulting weighted expansion graph. Then as noted in Theorem 3.8, there is a
length function β on Gα such that ρ(Gα, wα, β) = ρ(G,w). Recall that β assigned the
length of 1/α(e) to any edge f in Gα which belongs to the path P(e) corresponding
to the expansion of the edge e in G.

By applying Theorem 3.11 to G = (Gα, wα, β) and (Gα, wα) we obtain the fol-
lowing:

Corollary 3.14. Let (G,w) be an irreducible weighted graph and (Gα, wα) be
a weighted expansion graph. Then

log(ρ(G,w))
∑
e∈Eα

µα(e)
1

α(e)
≥ log (ρ(Gα, wα)) . (3.8)

Remark 3.15. Let α be an expansion on a weighted graph (G,w). Suppose that
1 ≤ m ≤ α(e) ≤ M , for all edges e in the graph G. The following inequalities from
[6] follow from the previous two corollaries:

If ρ(G,w) ≥ 1, then

ρ(G,w)1/M ≤ ρ(Gα, wα) ≤ ρ(G,w)1/m ≤ ρ(G,w).

If ρ(G,w) ≤ 1, then

ρ(G,w) ≤ ρ(G,w)1/m ≤ ρ(Gα, wα) ≤ ρ(G,w)1/M .

Furthermore if ρ(G,w) �= 1, then ρ(G,w) �= ρ(Gα, wα).

3.2. The expansion of a single edge. What is new about Corollaries 3.13
and 3.14 is that they give finer inequalities than those in [6] when α is a nonconstant
expansion. An interesting case of this is the case of the expansion of a single edge.

Corollary 3.16. Let (G,w) be an irreducible weighted graph, and let a ≥ 0 be
an integer. Fix an edge e0 ∈ E and define a length function α such that α(e) = 1
if e �= e0 and α(e0) = a + 1. Let f0 be an edge in Gα which is part of the path
P(e0). Let µ and µα denote the elasticity functions on edges in the graphs G and Gα,
respectively. Then

log (ρ(Gα, wα)) ≥ log(ρ(G,w))
1 + aµ(e0)

(3.9)
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and

log(ρ(G,w))(1 − aµα(f0)) ≥ log (ρ(Gα, wα)) . (3.10)

Furthermore, let i0 and j0 be the initial and terminal vertices of e0, respectively.
Equality holds in either of the above inequalities if and only if [i0, j0] = {e0} and the
vertices in G can be partitioned into p sets V0 = {j0}, V1, V2, . . . , Vp−2, Vp−1 = {i0}
such that w(i, j) > 0 and i ∈ Vm implies j ∈ Vm+1 or (i, j) = (i0, j0).

Proof. The inequality (3.9) follows immediately from Corollary 3.13, noting∑
e∈E µ(e)α(e) = aµ(e0) +

∑
e∈E µ(e) and

∑
e∈E µ(e) = 1.

Inequality (3.10) follows almost as easily from Corollary 3.14. In our case∑
e∈Eα

1
α(e)

µα(e) = 1 −
(

a

a+ 1

) ∑
f∈P(e0)

µα(f). (3.11)

If follows from Proposition 2.3 that for all f ∈ P(e0), µα(f) = µα(f0). There are
a+ 1 such edges, therefore∑

f∈Eα

1
α(f)

µα(f) = 1 − aµα(f0). (3.12)

For the case of equality, we consider the situation in light of Theorem 3.12. We
have equality if and only if for all e ∈ [i, j],

α(e) = k + δi − δj (3.13)

for some constants k, δ1, δ2, . . . , δn. Let C be any cycle in the graph G. Let τ be the
number of times that the edge e0 occurs in C. Consider the sum

∑
e∈C(α(e)− 1). By

the definition of α, this is τa, but from equation (3.13), this is k‖C‖. We therefore
get the relationship ‖C‖ = τa/k.

Let p = a/k. It is clear that p is an integer since we can take C to be a cycle
which passes through e0 exactly once. Now, for each integer m ∈ {1, 2, . . . , p− 1}, let
Vm be the collection of vertices v in G for which there is a path of length m from j0
to v.

We have established that the length of any cycle in the graph G is equivalent to
0 mod p. Suppose that 1 ≤ m1,m2 < p and that v ∈ Vm1 ∩ Vm2 . Let l be the length
of any path from v to i0. If m1 �= m2, then we can form two different cycles starting
at the vertex j0, passing through v, and ending with the edge e0. We can construct
one with length m1 + l + 1 and the other with length m2 + l + 1. The difference of
the lengths m1 −m2 must be equal to 0 mod p, but this is impossible. Therefore, the
sets {Vm} are pairwise disjoint.

We also have established that the length of any cycle is p times the number of
times it contains the edge e0. Let i ∈ Vp−1 and consider the shortest cycle from j0
to i back to j0. This cycle must be of length p, otherwise it would have to contain
e0 more than once and would not be the shortest such path. The shortest path from
j0 to i is of length p − 1 and therefore there is an edge connecting i to j0. But this
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edge must be e0, otherwise we have a cycle of length p which does not pass through
e0. Hence, Vp−1 = {i0} and [i0, j0] = {e0}.

Finally, we note that the set Vm can alternatively be described as the set of vertices
v for which Wm(j0, v) > 0. Therefore w(i, j) > 0 and i ∈ Wm implies j ∈ Wm+1 or
(i, j) = (i0, j0).

Given an expansion that lengthens a single edge, we can conclude an inequality
on its elasticity before and after the expansion. It follows directly from the bounds
in Corollary 3.16.

Corollary 3.17. With the same hypotheses as Corollary 3.16, for ρ(G,w) > 1,
if f0 ∈ P(e0), then

µ(e0) ≥ µα(f0)
1 − aµα(f0)

.

The reverse inequality holds in the case ρ(G,w) < 1.

3.3. Limiting cases. We now consider the situation where we have a sequence
of measured graphs Gn = (G,w, αn), where αn(e) → 0 for some collection of edges
E ′ ⊂ E . We note that the case where αn(e) → ∞ on a set of edges was previously
considered in the context of graph expansions [6, 7]. Here we consider the inverse
situation, the case where α is nonincreasing and αn(e) → 0 for some collection of
edges E ′ ⊂ E . To keep the setting more natural, we consider the case where αn

satisfies the following property: for all e ∈ E , either αn(e) = 1, for all n ≥ 0, or
limn→∞ αn(e) = 0.

There will be several cases, depending onG′ = (V ′, E ′), the subgraph ofG induced
by the edges in E ′.

Theorem 3.18. Let αn be a sequence of length functions on an irreducible
weighted graph (G,w). Let Gn = (G,w, αn). Suppose that G′ = (V ′, E ′) is an in-
duced subgraph of G such that

limn→∞ αn(e) = 0, for all e ∈ E ′, and αn(e) = 1, for all e ∈ E −E ′. If ρ(G′, w) >
1, then limn→∞ ρ(Gn) = ∞.

Proof. Let An(t) denote the adjacency matrix of the measured graph Gn. Let
Bn(t) be the adjacency matrix of the measured subgraph (G′, w, αn) arranged so that
the rows and columns of Bn(t) are indexed in the same way as the rows and columns
of An(t) (if a vertex i appears in G but not G′, then the ith row and column of Bn(t)
contain all zeros). Clearly, for any t > 0, ρ(An(t)) ≥ ρ(Bn(t)).

Let W ′ = Bn(1) be the weight matrix for the weighted graph (G′, w). Then for
any t > 0, limn→∞Bn(t) = W ′. Let ε > 0 be given. We know that ρ(W ′) > 1 so
that there is an N such that n > N implies that the minimum value of t for which
ρ(Bn(t)) = 1 is less than ε. Since ρ(An(t)) ≥ ρ(Bn(t)), for sufficiently large n, the
minimum value of t for which ρ(An(t)) = 1 is also less than ε. Therefore, as n→ ∞,
the reciprocals of the smallest real numbers for which ρ(An(t)) = 1 tend to ∞. That
is, limn→∞ ρ(Gn) = ∞.

The case where ρ(G′, w) < 1 is more complicated.
Theorem 3.19. Let αn be a sequence of length functions on an irreducible

weighted graph (G,w). Let Gn = (G,w, αn). Suppose that G′ = (V ′, E ′) is a subgraph
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of G such that limn→∞ αn(e) = 0, for all e ∈ E ′, and αn(e) = 1 for all e ∈ E − E ′.
Let W,W ′ be the adjacency matrices for (G,w) and (G′, w) respectively.

Suppose that W �= W ′ and that ρ(G′, w) < 1. Then

lim
n→∞ ρ(Gn) =

1
inf{t : ρ((W −W ′)t+W ′) = 1} .

In the case where W = W ′ and ρ(G′, w) < 1,

lim
n→∞ ρ(Gn) = 0.

Proof. Let An(t) denote the adjacency matrix of the measured graph Gn. Let
Bn(t) be the adjacency matrix of the measured graph (G′, w, αn). Then since αn ≡ 1
on E−E ′, An(t)−Bn(t) = (W−W ′)t. Further, we have for any t > 0, limn→∞Bn(t) =
Bn(1) = W ′. Let tn = inf{t | ρ(An(t)) = 1} and let t∗ = inf{t | ρ((W −W ′)t+W ′) =
1}. Notice that in the case where W �= W ′, t∗ is finite and it suffices to show that
limn→∞ tn = t∗.

Assume first that t1 < 1. Then for all n, tn < 1 (see Remark 3.15) and Bn(tn) ≤
Bn(1) = W ′. Therefore, we have that

1 = ρ(A(tn)) ≤ ρ((W −W ′)t+W ′)

which implies t∗ ≤ tn.
Let ε > 0. If W �= W ′, then ρ((W −W ′)(t∗ + ε) +W ′) > 1 since G is irreducible.

Since Bn(t∗+ε) → Bn(1) as n→ ∞, for sufficiently large n, we have ρ((W −W ′)(t∗+
ε) +Bn(t∗ + ε)) > 1. This implies that tn < t∗ + ε.

Similarly, if t1 ≥ 1 and ε > 0 is given, then t∗ − ε < tn ≤ t∗ for sufficiently large
n. Therefore limn→∞ tn = t∗.

Finally, assume W ′ = W . That is, αn → 0, for each edge of G and ρ(G,w) < 1.
Then ρ(Gn) < 1 for all n. Let t > 0. Then since An(t) → An(1) = W , for sufficiently
large n, ρ(An(t)) < 1. Therefore, limn→∞ ρ(Gn) < 1/t. Since this is true for any
t > 0, we have that limn→∞ ρ(Gn) = 0.

The case whereG′ does not contain a cycle is an interesting subcase of the previous
theorem where the limit can be calculated more explicitly. If G′ does not contain a
cycle, then there is a partial ordering ≺ on E ′ defined as follows. For e, f ∈ E ′, with
e �= f , we say e ≺ f if there is a path of edges, completely contained in G′, which
begins with e and ends with f . In this case we say that the edge e precedes f in G′.
Number the edges e1, e2, . . . , eM ∈ E ′ so that ek ≺ el implies that k > l.

Let A(0) be the adjacency matrix for the weighted graph (G,w), i.e., A(0)(i, j) =∑
e∈[i,j] w(e). We define the matrices A(1), . . . , A(M) as follows. For k > 0, let ik and

jk be the initial and terminal vertices of ek, respectively. Subtract w(ek) from the
ik, jk entry of A(k−1), then multiply the jkth row of the resulting matrix by w(ek)
and add the result to the ikth row. Call the new matrix A(k). Let Ã = A(M).

Theorem 3.20. Let αn be a sequence of length functions on an irreducible
weighted graph (G,w). Let Gn = (G,w, αn). Suppose that G′ = (V ′, E ′) is a sub-
graph of G such that limn→∞ αn(e) = 0, for all e ∈ E ′, and αn(e) = 1, for all
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e ∈ E − E ′. If G′ does not contain a cycle, then limn→∞ ρ(Gn) = ρ(Ã), where Ã is
defined in the previous paragraph.

Proof. Let A(0)
n (t) be the adjacency matrix for Gn. That is, A(0)

n (t)(i, j) =∑
e∈[i,j] w(e)tαn(e). We note that limn→∞ ρ(Gn) is the limit of the reciprocals of

the smallest real roots of det(I −A
(0)
n (t)).

For k > 0, let A(k)
n (t) be the matrix obtained by subtracting w(ek)tαn(ek) from the

entry A(k−1)(t)(ik, jk), then adding the jkth row of the resulting matrix to the ikth
row. It suffices to show that for any t > 0, limn→∞ det(I−A(k)

n (t)) = limn→∞ det(I−
A

(k−1)
n (t)) by the following argument. At the kth stage of the construction, we sub-

tract the term corresponding to ek from the matrix A(k−1)
n (t). Because of the ordering

of the edges, we can prove by induction that the jkth row of A(k−1)
n (t) does not contain

any terms corresponding to an el ∈ E ′, where l > k. Therefore, the matrix A(k)
n (t) will

only contain terms corresponding to edges el ∈ E ′, where l > k. Therefore, the last
matrix A(M)

n (t) contains no terms that depend upon n, or A(M)
n (t) = Ãt. If we can

establish that limn→∞ det(I − A
(k)
n (t)) = limn→∞ det(I − A

(k+1)
n (t)), then we shall

have that limn→∞ det(I −A
(0)
n (t)) = det(I − Ãt), and limn→∞ ρ(Gn) = ρ(Ã) follows.

For simplicity, let k = 1 and fix n > 0. We will prove that limn→∞ det(I −
A

(0)
n (t)) = limn→∞ det(I − A

(1)
n (t)). Suppose A(0)

n (t) is m ×m, we will introduce an
m× (m+ 1) matrix R and an (m+ 1)×m matrix S such that A(0)

n (t) = RS. Define

R(i, j) =



A
(0)
n (t)(i, j) if 1 ≤ i, j ≤ m, (i, j) �= (i1, j1),

A
(0)
n (t)(i1, j1) − w(e1)tαn(e1) if (i, j) = (i1, j1),

w(e1)tαn(e1) if (i, j) = (i1,m+ 1),

0 if i �= i1 and j = m+ 1

and

S(i, j) =


1 if i = j or (i, j) = (m+ 1, j1) ,

0 otherwise.

Then A
(0)
n (t) = RS. We let Bn(t) = SR. Since the matrices A(0)

n (t) and Bn(t) are
strongly shift equivalent (see [10]), we have that det(I−A(0)

n (t)) = det(I−Bn(t)). The
matrix Bn(t) can obtained from A

(0)
n (t) by subtracting w(e1)tαn(e1) from the (i1, j1)–

entry, augmenting a column which has entry 0 except in the i1–position which contains
the entry w(e1)tαn(e1), and augmenting a row which has entries equal to the j1–th
row of A(0)

n (t).
Next we note that if we multiply w(e1)tαn(e1) by the (m+ 1)–st row of I −Bn(t)

and add the result to the i1–st row of I − Bn(t), the resulting matrix Cn(t) is (m+
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1) × (m + 1) with det(Cn(t)) = det(I − Bn(t)). The (m + 1)–st column of Cn(t)
has 1 in the (m + 1,m + 1)–position, w(e1)(1 − tαn(e1)) in the (m + 1, j1)–position,
and 0’s elsewhere. Thus, by expanding det(Cn(t)) along the (m + 1)–st column, we
see that det(Cn(t)) = det(Cm+1,m+1(t)) ± w(e1)(1 − tαn(e1)) det(Cm+1,j0(t)), where
Ci,j(t) denotes the m × m matrix that results from deleting the i–th row and j–th
column of Cn(t).

Now we simply note that by construction, Cm+1,m+1(t) = A
(1)
n (t). Further,

limn→∞ w(e1)(1− tαn(e1)) det(Cm+1,j0(t)) = 0 since all entries of Cn(t) converge to a
finite value as n approaches infinity and (1 − tαn(e1)) → 0.

Acknowledgment. The authors would like to thank the anonymous referee for
the very constructive remarks which led to an improvement of the original manuscipt.

REFERENCES

[1] M. Boyle. Positive K–theory and symbolic dynamics. To appear in Dynamics and Randomness,
A. Maass, S. Martinez and J. San Martin, editors, Kluwer, pp. 31–52, 2002.

[2] M. Boyle. Symbolic dynamics and matrices. Combinatorial and graph-theoretical problems in
linear algebra. IMA Vol. Math. Appl., Vol. 50, Springer, 1993.

[3] M. Boyle and D. Lind. Small polynomial matrix presentations of nonnegative matrices. Linear
Algebra Appl., 355: 49–70, 2002.

[4] H. Caswell. Matrix Population Models (2nd Edition): Construction, Analysis, and Interpre-
tation. Sinauer, Sunderland, Massachusetts, 2001.

[5] H. De Kroon, A. Plaisier, J. van Groenendael, and H. Caswell. Elasticity: the relative con-
tribution of demographic parameters to population growth rate. Ecology, 65:1427–1431,
1986.

[6] K.-H. Förster and B. Nagy On spectra of expansion graphs and matrix polynomials, II. Elec-
tron. J. Linear Algebra, 9:158–170, 2002.

[7] S. Friedland and H. Schneider. Spectra of expansion graphs. Electron. J. Linear Algebra,
6:2–10, 1999.

[8] H. Kim, N. Ormes, and F. Roush. The spectra of nonnegative integer matrices via formal
power series. J. Amer. Math. Soc., 13:773–806, 2000.

[9] S.J. Kirkland, M. Neumann, N. Ormes, and J. Xu. On the elasticity of the Perron root of a
nonnegative matrix. SIAM J. Matrix Anal. Appl., 24:454–464, 2002.

[10] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge
University Press, New York, 1995.

[11] W. Parry and S. Tuncel. Classification Problems in Ergodic Theory. London Mathematical
Society Lecture Note Series, Vol. 97, Cambridge University Press, 1982.

[12] G.W. Stewart. Introduction to Matrix Computations. Academic Press, New York, 1973.
[13] P. Walters. An Introduction to Ergodic Theory. Springer Verlag, New York, 1982.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 10, pp. 163-178, July 2003

http://math.technion.ac.il/iic/ela


