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A GENERALIZATION OF MOORE–PENROSE BIORTHOGONAL
SYSTEMS∗
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Abstract. In this paper, the notion of Moore–Penrose biorthogonal systems is generalized. In
[Fiedler, Moore–Penrose biorthogonal systems in Euclidean spaces, Lin. Alg. Appl. 362 (2003), pp.
137–143], transformations of generating systems of Euclidean spaces are examined in connection with
the Moore-Penrose inverses of their Gram matrices. In this paper, g-inverses are used instead of the
Moore–Penrose inverses and, in particular, the details of transformations derived from reflexive g-
inverses are studied. Furthermore, the characterization theorem of Moore–Penrose inverses in [Fiedler
and Markham, A characterization of the Moore–Penrose inverse, Lin. Alg. Appl. 179 (1993), pp.
129–133] is extended to any reflexive g-inverse.
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1. Introduction. In [3], transformations of generating systems of Euclidean
spaces are introduced based on the Moore-Penrose inverses of their Gram matrices in
order to generalize the notion of biorthogonal systems. As a further generalization,
we shall examine in this paper transformations of ordered systems of vectors based
on any type of generalized inverse.

Before describing our results in detail, we shall introduce notation and terminol-
ogy. Throughout this paper, all matrices are real and all inner product spaces are
defined over R. We note that the extension to the complex case is straightforward.
We denote by In the identity matrix of order n. If its dimension is obvious, we simply
denote it by I. The m×n zero matrix is denoted by Om,n or simply by O. The symbol
GL(n) indicates the set of all n× n invertible matrices. Let W be any inner product
space and let U = (u1, u2, . . . , um) be any ordered system of vectors in W , that is,
ui ∈ W (1 ≤ i ≤ m). By rankU , we mean the dimension of the subspace of W gener-
ated by u1, u2, . . . , um. For any m×n matrix A = [aij ], we denote by UA the ordered
system of vectors in W whose jth vector is

∑m
i=1 aijui (1 ≤ j ≤ n). For two ordered

systems of vectors U = (u1, u2, . . . , um) and V = (v1, v2, . . . , vn) in W , the symbol
G(U, V ) denotes the m×n matrix whose (i, j)th element is given by the inner product
〈ui, vj〉. Especially we put G(U) = G(U,U). Note that G(U) is the Gram matrix of
U . Therefore G(U) ≥ 0 and rankG(U) = rankU . For any m× k matrix A and n× l
matrix B, we can easily verify that G(UA, V B) = G(V B,UA)T = ATG(U, V )B. Let
the systems U and V be given by U = FC and V = FD, where F = (f1, f2, . . . , fd)
is an orthonormal base of W , C is a d × m matrix and D is a d × n matrix. Then
rankU = rankC, rankV = rankD and G(U, V ) = CTD. Thus, by using well-known
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inequalities on the ranks of matrix products, we know

rankU + rankV − dimW ≤ rankG(U, V ) ≤ min {rankU, rankV } .(1.1)

Especially rankG(U, V ) = dimW if and only if rankU = rankV = dimW .
We shall review the fundamental facts on generalized inverses (g-inverses) which

are needed in later discussion (see e.g. [1]). Let A be any m× n matrix. An n ×m
matrix A− is a g-inverse of A if and only if AA−A = A. A g-inverse A−

r of A is called
a reflexive g-inverse if A−

r AA−
r = A−

r , which is equivalent to rankA−
r = rankA. If

A is nonnegative definite, any symmetric reflexive g-inverse of A is also nonnegative
definite. A g-inverse A−

m of A is a minimum norm g-inverse if and only if A−
mA is

symmetric. Moreover, a g-inverse A−
l of A is a least squares g-inverse if and only

if AA−
l is symmetric. Finally, there exists uniquely an g-inverse A+, which is called

the Moore–Penrose inverse, that satisfy all the properties mentioned above, that is,
A+AA+ = A+, (A+A)T = A+A and (AA+)T = AA+. Let

A = P

[
A1 O
O O

]
QT,

where P and Q are orthogonal matrices and A1 is an invertible matrix. Then the
Moore–Penrose inverse of A is given by

A+ = Q

[
A−1

1 O
O O

]
PT.

We now review the following fact, which immediately follows from Theorem 2.1
in [3] (see also Theorem 1 in [2]).

Theorem 1.1. Let U = (u1, u2, . . . , um) be any ordered generating system of an
inner product space W . Moreover, let G(U)+ be the Moore–Penrose inverse of G(U).
Then there exists uniquely an ordered system of vectors Ũ = (ũ1, ũ2, . . . , ũm) in W
such that

G(Ũ) = G(U)+,

G(U, Ũ) = G(U)G(U)+.

We shall give the following definition, which is equivalent to Definition 2.2 in [3].
Definition 1.2. We call the system Ũ in Theorem 1.1 the Moore–Penrose

biorthogonal system to U .
The next section is devoted to an extension of the above theorem and definition.

Given two ordered systems of vectors U = (u1, u2, . . . , um) and V = (v1, v2, . . . , vn)
in an inner product space, we shall construct another pair of ordered systems Ũ =
(ũ1, ũ2, . . . , ũn) and Ṽ = (ṽ1, ṽ2, . . . , ṽm) based on an arbitrary g-inverse G(U, V )− of
the matrix G(U, V ). Particularly, we shall closely study the case where G(U, V )− is
a reflexive g-inverse.

In section 3, the characterization theorem of Moore–Penrose inverses in [2], which
was used in [3], is extended to that of any reflexive g-inverses.
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2. G-inverse pairs. As a generalization of Theorem 1.1, we shall state the
following theorem.

Theorem 2.1. Let U = (u1, u2, . . . , um) and V = (v1, v2, . . . , vn) be any ordered
systems of vectors in an inner product space W . Moreover, let G(U, V )− be any g-
inverse of G(U, V ). Then there exist ordered systems of vectors Ũ = (ũ1, ũ2, . . . , ũn)
and Ṽ = (ṽ1, ṽ2, . . . , ṽm) in W such that

G(Ũ , Ṽ ) = G(U, V )−,(2.1)

G(U, Ṽ ) = G(U, V )G(U, V )−,(2.2)

G(Ũ , V ) = G(U, V )−G(U, V ),(2.3)

if and only if

rankG(U, V )− ≤ dimW + 2 rankG(U, V ) − rankU − rankV.(2.4)

Remark 2.2. We know from (1.1) that if G(U, V )− is a reflexive g-inverse of
G(U, V ), then condition (2.4) is satisfied.

To prove the theorem above, we shall show the following lemma.
Lemma 2.3. Let A be any m × d matrix, B be any d × n matrix and C be any

n×m matrix. Then, there exist an n× d matrix J and a d×m matrix K such that

JK = C, JB = O, AK = O,(2.5)

if and only if

rankA + rankB + rankC ≤ d + rankAB.(2.6)

Proof. Let rankA = rA, rankB = rB and rankAB = rAB . Then, there exists an
invertible matrix P such that

A =
[
A1 O

]
P, B = P−1


 B1

O
B2


 ,

where A1 is an m × rA matrix, B1 is an rAB × n matrix and B2 is an (d − rA) × n
matrix. Furthermore, there exist a (d− rA)× rA matrix Q1 and a (d− rA)× (d− rA)
invertible matrix Q2 such that

[
I O
Q1 Q2

]
PB =




B1

O(rA−rAB),n

B3

O


 ,

where B3 is an (rB − rAB) × n matrix. Hence JB = O and AK = O if and only if J
and K are in the forms

J =
[
On,rAB J1 O J2

] [
I O
Q1 Q2

]
P, K = P−1

[
O
K1

]
,
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where J1 is an n× (rA − rAB) matrix, J2 is an n× (d− rA − rB + rAB) matrix and
K1 is an (d− rA) ×m matrix. In this case, JK is expressed as

JK =
[
O J2

]
Q2K1.

Thus an n × m matrix C can be represented as C = JK if and only if rankC ≤
d− rA − rB + rAB. Therefore we have the proof.

Proof of Theorem 2.1. We define a matrix G by

G =
[

G(U, V ) G(U, V )G(U, V )−

G(U, V )−G(U, V ) G(U, V )−

]
.

Then we have[
I −G(U, V )
O I

]
G

[
I O

−G(U, V ) I

]
=

[
O O
O G(U, V )−

]
,[

I O
−G(U, V )− I

]
G

[
I −G(U, V )−

O I

]
=

[
G(U, V ) O

O C

]
,

where

C = G(U, V )− −G(U, V )−G(U, V )G(U, V )−.

Hence

rankC = rankG(U, V )− − rankG(U, V ).

On the other hand, let F = (f1, f2, . . . , fd) be an orthonormal base of W . Then, there
exist an m× d matrix A and a d×n matrix B such that U = FAT and V = FB. We
note that

rankA = rankU, rankB = rankV, AB = G(U, V ).

We assume condition (2.4) is satisfied. Then condition (2.6) is also satisfied.
Hence we know from Lemma 2.3 that there exist an n × d matrix J and a d × m
matrix K that satisfy (2.5). Therefore, we can define a pair of systems (Ũ , Ṽ ) which
satisfies conditions (2.1), (2.2) and (2.3) by

Ũ = F
[
AT JT

] [
(G(U, V )−)T

I

]
, Ṽ = F

[
B K

] [
G(U, V )−

I

]
.(2.7)

To show the converse, we assume that there exists a pair of systems (Ũ , Ṽ ) that
satisfies conditions (2.1), (2.2) and (2.3). We know that there exist an n × d matrix
J̃ and a d ×m matrix K̃ such that Ũ = F J̃T and Ṽ = FK̃. Then, from conditions
(2.1), (2.2) and (2.3), we have

J̃K̃ = G(U, V )−, AK̃ = G(U, V )G(U, V )−, J̃B = G(U, V )−G(U, V ).
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We define an n× d matrix J and a d×m matrix K by

J =
[ −G(U, V )− I

] [
A

J̃

]
, K =

[
B K̃

] [ −G(U, V )−

I

]
.(2.8)

Then, J and K satisfy condition (2.5), which means (2.6). Thus we have (2.4).
We now introduce the notion of g-inverse pairs as a generalization of Definition

1.2.
Definition 2.4. We call any pair of systems (Ũ , Ṽ ) that satisfies conditions

(2.1), (2.2) and (2.3) a g-inverse pair to (U, V ) associated with G(U, V )−.
In general, for a given pair of systems (U, V ) and a g-inverse G(U, V )−, a g-inverse

pair (Ũ , Ṽ ) is not uniquely determined. However, if U and V are both generating
systems of W and G(U, V )− is a reflexive g-inverse of G(U, V ), then a g-inverse pair
is uniquely determined, that is, we have the following theorem.

Theorem 2.5. Let U = (u1, u2, . . . , um) and V = (v1, v2, . . . , vn) be any ordered
generating systems of an inner product space W . Moreover, let G(U, V )−r be any
reflexive g-inverse of G(U, V ). Then there exists uniquely in W a g-inverse pair
(Ũ , Ṽ ) to (U, V ) associated with G(U, V )−r . Furthermore, both Ũ and Ṽ are generating
systems of W .

Proof. The existence of a g-inverse pair (Ũ , Ṽ ) follows from Remark 2.2. To show
the uniqueness, let F = (f1, f2, . . . , fd) be an orthonormal base of W . Moreover, let
A and B be the matrices that satisfy U = FAT and V = FB. We note rankA =
rankB = d. Therefore, condition (2.5) implies J = O and K = O. Thus, it follows
from (2.8) that Ũ = F J̃T and Ṽ = FK̃ are the only systems for which conditions
(2.1), (2.2) and (2.3) hold, where

J̃ = G(U, V )−r A, K̃ = BG(U, V )−r .

Furthermore, since rankG(Ũ , Ṽ ) = rankG(U, V )−r = rankG(U, V ) = dimW , we
obtain rank Ũ = rank Ṽ = dimW . This means both Ũ and Ṽ generate W .

Remark 2.6. If we can choose J 
= O or K 
= O in (2.7), then (Ũ , Ṽ ) defined by
replacing J and K with 2J and (1/2)K becomes another g-inverse pair. Therefore
(Ũ , Ṽ ) is not unique. From this fact, we know that the condition assumed in Theorem
2.5 is weakest in asserting uniqueness.

Next, we shall investigate the case where U = V in Theorem 2.1.
Theorem 2.7. Let U = (u1, u2, . . . , um) be any ordered system of vectors in an

inner product space W . Moreover, let G(U)− be any g-inverse of G(U). Then there
exists an ordered system of vectors Ũ = (ũ1, ũ2, . . . , ũm) in W such that

G(Ũ ) = G(U)−,(2.9)

G(U, Ũ) = G(U)G(U)−,(2.10)

if and only if G(U)− is nonnegative definite and

rankG(U)− ≤ dimW.(2.11)
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For the proof of Theorem 2.7, we state the following lemma, which can be easily
verified.

Lemma 2.8. Let A be any m×d matrix and C be any m×m nonnegative definite
matrix. Then, there exists an m× d matrix J such that

JJT = C, AJT = O,

if and only if

rankA + rankC ≤ d.

Proof of Theorem 2.7. We can use the same method as in the proof of Theorem
2.1 by putting V = U . In this case, condition (2.11) is equivalent to (2.4). Assume
that G(U)− is nonnegative definite and satisfies condition (2.11). Then, by virtue of
Lemma 2.8, we can choose J and K so that K = JT in (2.7), that is, Ũ = Ṽ . The
converse is obvious from Theorem 2.1

Definition 2.9. We call any system Ũ that satisfies conditions (2.9) and (2.10)
a g-inverse system to U associated with G(U)−.

Combining Theorems 2.5 and 2.7, we obtain the following corollary.
Corollary 2.10. Let U = (u1, u2, . . . , um) be any ordered generating system of

an inner product space W . Moreover, let G(U)−r be any symmetric reflexive g-inverse
of G(U). Then there exists uniquely in W a g-inverse system Ũ to U associated with
G(U)−r . Moreover, Ũ is a generating system of W .

Proof. Since G(U) is nonnegative definite, so is G(U)−r . Furthermore, we have
rankG(U)−r = rankG(U) = dimW . Hence, we can apply Theorem 2.7 together with
Theorem 2.5.

At the end of this section, we shall examine g-inverse pairs associated with re-
flexive least squares g-inverses and reflexive minimum norm g-inverses.

Theorem 2.11. Let U = (u1, u2, . . . , um) and V = (v1, v2, . . . , vn) be any ordered
generating systems of an inner product space W . Then we have the following claims.

(i) Let G(U, V )−l be any reflexive least squares g-inverse of G(U, V ) and let
(Ũ , Ṽ ) be the g-inverse pair to (U, V ) associated with G(U, V )−l . Then for
any m× 1 matrix A, Ṽ A = O if and only if UA = O.

(ii) Let G(U, V )−m be any reflexive minimum norm g-inverse of G(U, V ) and let
(Ũ , Ṽ ) be the g-inverse pair to (U, V ) associated with G(U, V )−m. Then for
any n× 1 matrix A, ŨA = O if and only if V A = O.

Proof. We only prove (i) because (ii) is similarly proved. Since G(U, V )−l is a least
squares g-inverse, we know from (2.2) that G(U, Ṽ ) = G(Ṽ , U). Therefore for any
m× 1 matrix A, we have G(U, Ṽ A) = G(Ṽ , UA). Moreover we know from Theorem
2.5, U and Ṽ are both generating systems of W . Hence, Ṽ A = O if and only if
UA = O.

The above property is mentioned in [3] for Moore-Penrose biorthogonal systems.
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3. Characterization of reflexive g-inverses. The aim of this section is to
generalize Theorem 1 in [2] and Theorem A in [3], which characterize Moore–Penrose
inverses. The following theorem can be seen as an extension of Theorem 1 in [2].

Theorem 3.1. Let A be any m× n matrix.
(i) Let X be any n× n matrix and Y be any m×m matrix such that

AX = A, rankX = rankA,(3.1)
Y A = A, rankY = rankA.(3.2)

Then, an n×m matrix Z satisfies

rank
[

A Y
X Z

]
= rankA(3.3)

if and only if

Z = XA+Y(3.4)

and thus Z is a reflexive g-inverse of A.
(ii) Conversely, let Z be any reflexive g-inverse of A. Then an n × n matrix X

and an m×m matrix Y satisfy conditions (3.1), (3.2) and (3.3) if and only
if

X = ZA, Y = AZ.(3.5)

(iii) In the above one-to-one correspondence between the pair (X,Y ) and Z, the
matrix Z is a minimum norm g-inverse of A if and only if X is symmetric.
Similarly, Z is a least squares g-inverse of A if and only if Y is symmetric.

Proof. Let rankA = r. Moreover, let A and B be partitioned as

A = P

[
A1 O
O O

]
QT, X = Q

[
X1 X2

X3 X4

]
QT,

where P and Q are orthogonal matrices and A1 and X1 are r×r matrices. We assume
that (3.1) holds. Then noting that A1 is invertible, we obtain from the condition
AX = A that X1 = I and X2 = O. Furthermore, since rankX = r, X4 must vanish.
By applying the same procedure to Y , we know that conditions (3.1) and (3.2) hold
if and only if X and Y are in the forms

X = Q

[
Ir O
X3 O

]
QT, Y = P

[
Ir Y2

O O

]
PT,(3.6)

which implies that

XA+A = X, AA+Y = Y.(3.7)

Thus we have[
I O

−XA+ I

] [
A Y
X Z

][
I −A+Y
O I

]
=

[
A O
O Z −XA+Y

]
.
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Therefore, under assumption (3.1) and (3.2), we know that condition (3.3) holds if
and only if Z = XA+Y . In this case, from (3.1) and (3.2) we have AZA = AA+A = A
and ZAZ = XA+AA+Y = Z. This means Z is a reflexive g-inverse of A. Thus we
obtain (i).

We now prove (ii). It is easily verified that condition (3.5) gives (3.1), (3.2) and
(3.3). To show the uniqueness, let X and Y be any matrices satisfying (3.1), (3.2)
and (3.3). Then substituting (3.6) into (3.4), we have

Z = Q

[
A−1

1 A−1
1 Y2

X3A
−1
1 X3A

−1
1 Y2

]
PT.

Hence, transformation (3.4) from the pair (X,Y ) to Z is injective.
Finally, (iii) immediately comes from (3.5).
Remark 3.2. ¿From (3.6), we know that conditions (3.1) and (3.2) imply X2 =

X and Y 2 = Y . Hence, in the case where Z = A+, the above theorem corresponds
exactly to Theorem 1 in [2].

At the end of this paper, we shall state the following proposition in connection
with Theorem A in [3].

Proposition 3.3. Let A be any m × n matrix such that rankA = r. Then we
have the following claims.

(i) Let R and S be any n× (n− r) matrices that satisfy

AR = O, STR ∈ GL(n− r).(3.8)

We define an n× n matrix X by

X = I −R(STR)−1ST.(3.9)

Then X satisfies condition (3.1). Conversely, any n× n matrix X satisfying
condition (3.1) is in the form (3.9).

(ii) Let R and S be any m× (m− r) matrices that satisfy

ATR = O, RTS ∈ GL(m− r).

We define an m×m matrix Y by

Y = I − S(RTS)−1RT.(3.10)

Then Y satisfies condition (3.2). Conversely, any m×m matrix Y satisfying
condition (3.2) is in the form (3.10).

Proof. We only prove (i), since (ii) is similarly proved. Let X be defined by (3.9).
Then from (3.8), we know AX = A. This means rankX ≥ r. On the other hand, we
obtain STX = O. Since STR is regular, rankST = n− r. This implies rankX ≤ r.
Hence, rankX = r as desired.

Conversely, let X be any n × n matrix satisfying condition (3.1). Furthermore,
let R be any n× (n− r) matrix such that AR = O and rankR = n− r. We put

S = (I −X)TR.(3.11)
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Then noting (3.7), we have

STR = RT(I −X)R(3.12)
= RTR−RTXA+AR = RTR.

Thus we know that STR ∈ GL(n− r). Moreover, from (3.1) and the assumption that
AR = O, we have

A(I −R(STR)−1ST −X) = O.(3.13)

On the other hand, from (3.12)

RT(I −R(STR)−1ST −X) = RT(I −R(RTR)−1RT(I −X) −X)(3.14)
= O.

Since

rank
[
AT R

]T = rank
[
AT R

]T [
AT R

]
= rankA + rankR = n

equations (3.13) and (3.14) mean I −R(STR)−1ST −X = O. This gives the proof.
Remark 3.4. In (3.11), if X is symmetric, then we have AS = A(I −X)R = O.

This means
[
AT R

]T (S − R) = O. Thus we have S = R. The same is true for
claim (ii).
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