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RECOGNITION OF HIDDEN POSITIVE ROW DIAGONALLY
DOMINANT MATRICES∗
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Abstract. A hidden positive row diagonally dominant (hprdd) matrix is a square matrix A for
which there exist square matrices C and B so that AC = B and each diagonal entry of B and C is
greater than the sum of the absolute values of the off-diagonal entries in its row. A linear program
with 5n2 − 4n variables and 2n2 constraints is defined that takes as input an n × n matrix A and
produces C and B satisfying the above conditions if and only if they exist. A 4×4 symmetric positive
definite matrix that is not an hprdd matrix is presented.
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1. Introduction and Terminology. An n × n matrix A = (aij) with real
entries is called row diagonally dominant if, for i = 1, . . . , n, we have

|aii| >
∑
i�=j

|aij |.

The matrix A is called a P-matrix if the principal minors of A are all positive. The
problem of determining if A is not a P -matrix is known to be NP -complete [2]. Two
of the most important subclasses of the class of P -matrices are the class of positive
definite matrices and the class of M -matrices. M -matrices are P -matrices that have
non-positive off-diagonal elements. Membership in each of these subclasses can be
checked in polynomial time. The class of M -matrices has been generalized to the
class of hidden M matrices. A P -matrix A is hidden M if there are matrices B and C
such that AC = B, where C and B both have non-positive off-diagonal entries and C
is an M -matrix. Membership in the hidden M class can also be tested in polynomial
time (see [4]). It has recently been (see [7]) proved that A is a P -matrix whenever one
can find row diagonally dominant matrices B and C, with positive diagonal entries, so
that AC = B. We will call matrices satisfying this sufficient condition for P -matrices
hidden positive row diagonally dominant, or hprdd.

Tsatsomeros [7] proved that every hidden-M matrix is hprdd. No example of a P -
matrix that is not hprdd was known until now, and there was some speculation (see [7])
that there might not be such a matrix. Part of the difficulty in producing such a matrix
was that no efficient algorithm had been published for checking the hprdd property.
We present a linear program with 5n2−4n variables and 2n2 constraints that produces
the required B and C if they exist. If the input matrix is not hprdd, the solution to the
dual linear program provides a proof that the matrix is not hprdd. Experimentation
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with randomly generated positive definite matrices yielded the following example of
a positive definite matrix that is not hprdd:




4 4 7 −9
4 16 −7 −2
7 −7 30 −24
−9 −2 −24 25


 .

2. The Linear Program. The set of vectors K in R
n satisfying an inequal-

ity xi >
∑

i�=j |xj | is the interior of a cone that has 2(n − 1) extreme rays, each
of the form ei ± ej for standard basis vectors ei �= ej . The set of pairs (C, B)
of n × n matrices can be identified with R

2n2
. Define U = {(C, B) ∈ R

2n2
:

B and C are both positive row diagonally dominant}. Then U is the Cartesian prod-
uct of 2n copies of K. It is the interior of a convex cone that has the 4n(n−1) extreme
rays of the form (Eii ± Eij , 0), i �= j or (0, Eii ± Eij), i �= j where Eij is the n × n
matrix that has 1 in entry (i, j) and 0 everywhere else.

Let A be an n × n matrix. Define V = {(C, B) ∈ R
2n2

: AC = B}. Note that V

is a subspace of R
2n2

that is spanned by the n2 vectors of the form (Eij , AEij). A
matrix A is hprdd if and only if V ∩ U is not empty.

In order to define a linear program to check for the hprdd property of a matrix A,
let H be a 2n2 × n2 matrix that has as its columns the vectors (Eij , AEij) (suitably
identified with column vectors in R

2n2
), and let G be a 2n2 × 4n(n − 1) matrix that

has as its columns the vectors (Eii±Eij , 0), i �= j and (0, Eii±Eij), i �= j. Then U∩V
is nonempty if and only if there exist vectors x and y, with y > 0, so that Hx = Gy.
The components of y are positive because V is the interior of the cone generated by
the columns of G. The problem of finding x and y, if they exist, is a linear program
with 2n2 rows and 5n2 − 4n columns.

Most linear program solvers require the inequality y > 0 to be of the form ≥. We
will therefore require that the components of y each be at least 1. This does not affect
the feasibility of the problem, because V is closed under multiplication by positive
scalars. We also look for a solution that minimizes the sum of the components of y.

3. Infeasibility Proof. From Theorem 11.2 of Rockafellar [5] we conclude that
if the subspace V and the non-empty open convex set U are disjoint, there must be
a hyperplane L containing V so that one of the open half-spaces associated with L
contains U . Clearly, U is in an open half-space associated with L if and only if its
closure is in the corresponding closed half-space and an element of the closure of U
is in the open half-space. When V is the span of the columns of a matrix H , as
above, and U is the interior of the cone generated by the columns of a matrix G, the
existence of such an L follows from the theorem of Stiemke [6].

The dot product of two elements (R, S) and (C, B) in R
2n2

is (R, S) · (C, B) =
#(R ◦ C + S ◦ B) where ◦ is the entrywise product and # is the sum of the entries
function. Let L be the set of (C, B) in R

2n2
for which (R, S) · (C, B) = 0. Then

V ⊆ L if and only if (R, S) · (Eij , AEij) = 0 for all pairs (i, j). Note that AEij is
the matrix with column i of A in its jth column and zeros everywhere else. It follows
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that #(R ◦ Eij) = rij and that #(S ◦ AEij) is the usual dot product of column j of
S and column i of A. The inclusion V ⊆ L is therefore equivalent to the equation
R + AT S = 0.

The requirement that the closure of U be in one of the closed half-spaces deter-
mined by L is equivalent to the set of 4n(n − 1) inequalities (R, S) · (Eii ± Eij , 0) ≥
0, i �= j and (R, S) ·(0, Eii±Eij) ≥ 0, i �= j. The inequalities (R, S) ·(Eii±Eij , 0) ≥ 0
for a given pair (i, j) with i �= j are clearly equivalent to the inequality rii ≥ |rij |,
and the inequalities (R, S) · (0, Eii ± Eij) ≥ 0 for a given pair (i, j) with i �= j are
clearly equivalent to the inequality sii ≥ |sij |.

In order for the open set U , which is in a closed halfspace determined by L, to be
in the corresponding open halfspace, we need one of the extreme rays of the closure
of U to miss L. Thus, for some i �= j, we need one of the following: rii > rij , rii >
−rij , sii > sij , or sii > −sij . For a pair (R, S) that satisfies the inequalities rii ≥ |rij |
and sii ≥ |sij | whenever i �= j, the satisfaction of at least one such strict inequality is
equivalent to (R, S) �= (0, 0).

It is not possible for U ∩ V to be nonempty if U is in one of the open half-spaces
defined by L (which contains V ). We therefore have the following theorem.

Theorem 3.1. Let A be an n × n matrix. Exactly one of the following holds:
1. There exist row diagonally dominant matrices B and C with positive diagonal

entries and with AC = B, or
2. There exist square matrices R and S, not both 0, satisfying R + AT S = 0

and, for all 1 ≤ i, j ≤ n, rii ≥ |rij | and sii ≥ |sij |.
4. A non-hprdd matrix that is positive definite. We implemented the

linear program of the previous section using the free software “MPL 4.2 for Windows.”
The 6×6 symmetric positive definite matrix of [1] that is not hidden M encouraged us
to test symmetric positive definite matrices. (See [3] for a 3×3 positive definite matrix
that is not hidden M .) It is also easy to generate random symmetric positive definite
matrices by randomly generating their Cholesky factors. The smallest counterexample
we found is the matrix




4 4 7 −9
4 16 −7 −2
7 −7 30 −24
−9 −2 −24 25


 ,

for which the proof that it is not hprdd is provided by the matrices

R =




11 8 2 −11
23 24 −24 −7
10 −16 23 −22
−22 −8 −23 23


 and S =




24 −24 −9 23
−8 8 8 −5
−3 8 8 −1
6 0 6 6


 .

We should point out that this approach does not resolve the question of whether or
not there exist 3× 3 P -matrices satisfying the second alternative of the Theorem. To
produce a P matrix satisfying the second alternative where its transpose does not is
an interesting challenge.
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