CORRIGENDUM TO "THE MAXIMAL SPECTRAL RADIUS OF A DIGRAPH WITH $(M+1)^{2}-S$ EDGES"

JAN SNELLMAN*

Abstract

In [3] we claimed to have proved the following: given any fixed integer $s>6$ it holds that for all sufficiently large m the maximal spectral radius of a digraph with $k=(m+1)^{2}-s$ edges is obtained by the digraph whose adjacency matrix is the one that Friedland [1] called E_{k}. However, what we have in fact showed is the weaker result that the above digraph is optimal among digraphs with k edges and $\mathbf{m}+1$ vertices.

Key words. Spectral radius, digraphs, 0-1 matrices, Perron-Frobenius theorem, number of walks.

AMS subject classifications. 05C50; 05C20, 05C38
In [3] the following notation and terminology was used: for positive integers m, s the set of digraphs on the $m+1$ vertices $\{1,2, \ldots, m+1\}$ that have exactly $(m+1)^{2}-s$ edges is denote by $\mathcal{D I}(m, s)$. We will always assume that m is large enough in comparison to s that $m^{2}<(m+1)^{2}-s$, i.e. that $2 m+1>s$. By $\mathcal{P} \mathcal{D} \mathcal{I}(m, s)$ we denote the subset of digraphs that have a adjacency matrix whose rows and columns are weakly decreasing. In other words, if $G \in \mathcal{P D} \mathcal{I}(m, s)$ have adjacency matrix $A=\left(a_{i j}\right)$, then there is some numerical partition λ of s such that

$$
a_{i j}= \begin{cases}0 & j+\lambda_{m+1-i}>m+1 \\ 1 & \text { otherwise }\end{cases}
$$

Let us (in this note) denote this A by $B(m, \lambda)$. As an example,

$$
B(4,(2,1))=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

We state again that $\mathcal{P D \mathcal { D }}(m, s)=\{B(m, \lambda) \mid \lambda \vdash s\}$, in particular, $|\mathcal{P D \mathcal { D }}(m, s)|=$ $p(s)$ for all (sufficiently large) m, where $p(s)$ denotes the number of numerical partitions of s. Schwarz [2] proved that

$$
\begin{equation*}
\max \{\rho(A) \mid A \in \mathcal{D} \mathcal{I}(m, s)\}=\max \{\rho(A) \mid A \in \mathcal{P D \mathcal { I }}(m, s)\} \tag{0.1}
\end{equation*}
$$

where $\rho(A)$ is the spectral radius (i.e. largest modulus of an eigenvalue) of the adjacency matrix of A.

Now fix $s>6$, and let $\tau=\tau(s)$ be the numerical partition of s such that $\tau=(\lfloor s / 2\rfloor, 1, \ldots, 1)$. In other words, τ is a "hook" such that the length of its arms

[^0]differ by at most one. Friedland [1] defined the matrix E_{k} as
\[

E_{k}=\left($$
\begin{array}{cc}
J_{a} & \alpha_{p} \\
\alpha_{q}^{t} & 0
\end{array}
$$\right), \quad k=a^{2}+\ell, \quad p=\lfloor\ell / 2\rfloor, \quad q=\ell-p
\]

where J_{a} is the $a \times a$ matrix of all ones, and α_{p} is the row vector consisting of p ones. We have that $B(\tau, m)=E_{(m+1)^{2}-s}$.

Let σ be a different partition of s (if s is even, σ should be different from the conjugate partition of τ as well). We showed in [3] that there is an $w=w(\sigma)$ such that for all $m>w$ we have that $\rho(B(m, \tau))>\rho(B(m, \sigma))$. Since there are only finitely many numerical partitions of s, we get that there is an $S=S(s)$ so that for all $m>S$,

$$
\rho(B(m, \tau))=\max \{\rho(A) \mid A \in \mathcal{P D \mathcal { D }}(m, s)\}=\max \{\rho(A) \mid A \in \mathcal{D} \mathcal{I}(m, s)\}
$$

In other words, for a fixed s, there is an S such that for all $m>S$ the digraph with adjacency matrix $B(m, \tau(s))$ has the largest spectral radius among all digraphs on the vertex set $\{1,2, \ldots, m+1\}$ with $(m+1)^{2}-s$ edges.

Friedland [1] conjectured that the maximal spectral radius of a digraph with $(m+1)^{2}-s$ edges can be obtained by a digraph with $m+1$ vertices. Clearly, given this conjecture our result could be strengthened as follows: for a fixed $s>6$, there is an S such that for all $m>S$ the digraph with adjacency matrix $B(m, \tau(s))$ has the largest spectral radius among all digraphs with $(m+1)^{2}-s$ edges. This is what we claimed to have proved in [3].

In summary: the phrase "digraph with $(m+1)^{2}-s$ edges" should be changed to "digraph with $(m+1)^{2}-s$ edges and $\mathbf{m}+\mathbf{1}$ vertices" in the title, in the abstract, and at the bottom of page 180 of [3].

REFERENCES

[1] Schmuel Friedland. The Maximal Eigenvalue of 0-1 Matrices with Prescribed Number of Ones. Linear Algebra and its Applications, 69:33-69, 1985.
[2] B. Schwarz. Rearrangements of square matrices with non-negative elements. Duke Mathematical Journal, pages 45-62, 1964.
[3] Jan Snellman. The maximal spectral radius of a digraph with $(m+1)^{2}-s$ edges. ELA volume 10, pp 179-189, July 2003.

[^0]: *Department of Mathematics, Stockholm University, SE-10691 Stockholm, Sweden (Jan.Snellman@math.su.se)

