THE SPECTRUM OF THE EDGE CORONA OF TWO GRAPHS*

YAOPING HOU^{\dagger} AND WAI-CHEE SHIU ${ }^{\ddagger}$

Abstract

Given two graphs G_{1}, with vertices $1,2, \ldots, n$ and edges $e_{1}, e_{2}, \ldots, e_{m}$, and G_{2}, the edge corona $G_{1} \diamond G_{2}$ of G_{1} and G_{2} is defined as the graph obtained by taking m copies of G_{2} and for each edge $e_{k}=i j$ of G, joining edges between the two end-vertices i, j of e_{k} and each vertex of the k-copy of G_{2}. In this paper, the adjacency spectrum and Laplacian spectrum of $G_{1} \diamond G_{2}$ are given in terms of the spectrum and Laplacian spectrum of G_{1} and G_{2}, respectively. As an application of these results, the number of spanning trees of the edge corona is also considered.

Key words. Spectrum, Adjacency matrix, Laplacian matrix, Corona of graphs.

AMS subject classifications. $05 \mathrm{C} 05,05 \mathrm{C} 50$

[^0]
[^0]: * Received by the editors September 11, 2009. Accepted for publication August 22, 2010. Handling Editor: Richard A. Brualdi.
 ${ }^{\dagger}$ Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, China (yphou@hunnu.edu.cn). Research supported by NSFC(10771061).
 ${ }^{\ddagger}$ Department of Mathematics, Hong Kong Baptist University, Hong Kong, China. (wcshiu@hkbu.edu.hk).

