LEAST SQUARES (P, Q)-ORTHOGONAL SYMMETRIC SOLUTIONS OF THE MATRIX EQUATION AND ITS OPTIMAL APPROXIMATION*

LIN-LIN ZHAO ${ }^{\dagger}$, GUO-LIANG CHEN ${ }^{\dagger}$, AND QING-BING LIU ${ }^{\ddagger}$

Abstract

In this paper, the relationship between the (P, Q)-orthogonal symmetric and symmetric matrices is derived. By applying the generalized singular value decomposition, the general expression of the least square (P, Q)-orthogonal symmetric solutions for the matrix equation $A^{T} X B=C$ is provided. Based on the projection theorem in inner space, and by using the canonical correlation decomposition, an analytical expression of the optimal approximate solution in the least squares (P, Q)-orthogonal symmetric solution set of the matrix equation $A^{T} X B=C$ to a given matrix is obtained. An explicit expression of the least square (P, Q)-orthogonal symmetric solution for the matrix equation $A^{T} X B=C$ with the minimum-norm is also derived. An algorithm for finding the optimal approximation solution is described and some numerical results are given.

Key words. Matrix equation, Least squares solution, (P, Q)-orthogonal symmetric matrix, Optimal approximate solution.

AMS subject classifications. $65 \mathrm{~F} 15,65 \mathrm{~F} 20$.

[^0]
[^0]: *Received by the editors June 3, 2009. Accepted for publication August 22, 2010. Handling Editor: Peter Lancaster.
 ${ }^{\dagger}$ Department of Mathematics, East China Normal University, Shanghai, 200241, China (correspondence should be addressed to Guo-liang Chen, glchen@math.ecnu.edu.cn). Supported by NSFC grants (10901056, 10971070, 11071079) and Shanghai Natural Science Foundation (09ZR1408700).
 \ddagger Department of Mathematics, Zhejiang Wanli University, Ningbo 315100, China. Supported by Foundation of Zhejiang Educational Committee (No. Y200906482) and Ningbo Natural Science Foundation (2010A610097).

