Electronic Journal of Linear Algebra ISSN 1081-3810 A publication of the International Linear Algebra Society Volume 19, pp. 98-107, February 2010

SIGN PATTERNS THAT REQUIRE EVENTUAL POSITIVITY OR REQUIRE EVENTUAL NONNEGATIVITY*

ELISABETH M. ELLISON[†], LESLIE HOGBEN[‡], AND MICHAEL J. TSATSOMEROS[§]

Abstract. It is shown that a square sign pattern \mathcal{A} requires eventual positivity if and only if it is nonnegative and primitive. Let the set of vertices in the digraph of \mathcal{A} that have access to a vertex s be denoted by $\operatorname{In}(s)$ and the set of vertices to which t has access denoted by $\operatorname{Out}(t)$. It is shown that $\mathcal{A} = [\alpha_{ij}]$ requires eventual nonnegativity if and only if for every s, t such that $\alpha_{st} = -$, the two principal submatrices of \mathcal{A} indexed by $\operatorname{In}(s)$ and $\operatorname{Out}(t)$ require nilpotence. It is shown that \mathcal{A} requires eventual exponential positivity if and only if it requires exponential positivity, i.e., \mathcal{A} is irreducible and its off-diagonal entries are nonnegative.

Key words. Eventually nonnegative matrix, Eventually positive matrix, Eventually exponentially positive matrix, Sign pattern, Perron-Frobenius.

AMS subject classifications. 15A48, 05C50, 15A18.

^{*} Received by the editors January 29, 2009. Accepted for publication February 17, 2010. Handling Editor: Judith J. McDonald. Part of this research was done at the American Institute of Mathematics workshop, "Nonnegative Matrix Theory: Generalizations and Applications." The authors thank AIM and NSF for their support.

[†]Camas, WA, USA (lisyree@yahoo.com).

[‡]Department of Mathematics, Iowa State University, Ames, IA 50011, USA (lhogben@iastate.edu) & American Institute of Mathematics, 360 Portage Ave, Palo Alto, CA 94306 (hogben@aimath.org).

[§]Mathematics Department, Washington State University, Pullman, WA 99164, USA (tsat@wsu.edu).