

SIGN PATTERNS THAT REQUIRE OR ALLOW POWER-POSITIVITY*

MINERVA CATRAL[†], LESLIE HOGBEN[‡], D. D. OLESKY[§], and P. VAN DEN DRIESSCHE[¶]

Abstract. A matrix A is power-positive if some positive integer power of A is entrywise positive. A sign pattern \mathcal{A} is shown to require power-positivity if and only if either \mathcal{A} or $-\mathcal{A}$ is nonnegative and has a primitive digraph, or equivalently, either \mathcal{A} or $-\mathcal{A}$ requires eventual positivity. A sign pattern \mathcal{A} is shown to be potentially power-positive if and only if \mathcal{A} or $-\mathcal{A}$ is potentially eventually positive.

Key words. Power-positive matrix, Eventually positive matrix, Requires power-positivity, Potentially power-positive, Potentially eventually positive, Sign pattern.

AMS subject classifications. (2010) 15B48, 15B35, 05C50, 15A18.

^{*} Received by the editors November 12, 2009. Accepted for publication February 18, 2010. Handling Editor: Michael J. Tsatsomeros.

[†]Department of Mathematics, Iowa State University, Ames, IA 50011, USA (mrcatral@iastate.edu).

[‡]Department of Mathematics, Iowa State University, Ames, IA 50011, USA (lhogben@iastate.edu) & American Institute of Mathematics, 360 Portage Ave, Palo Alto, CA 94306 (hogben@aimath.org).

[§]Department of Computer Science, University of Victoria, Victoria, BC V8W 3P6, Canada (dolesky@cs.uvic.ca).

[¶]Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada (pvdd@math.uvic.ca).