

SUBDOMINANT EIGENVALUES FOR STOCHASTIC MATRICES WITH GIVEN COLUMN SUMS*

STEVE KIRKLAND[†]

Abstract. For any stochastic matrix A of order n, denote its eigenvalues as $\lambda_1(A), \ldots, \lambda_n(A)$, ordered so that $1 = |\lambda_1(A)| \ge |\lambda_2(A)| \ge \ldots \ge |\lambda_n(A)|$. Let c^T be a row vector of order n whose entries are nonnegative numbers that sum to n. Define S(c), to be the set of $n \times n$ row-stochastic matrices with column sum vector c^T . In this paper the quantity $\overline{\lambda(c)} = \max\{|\lambda_2(A)||A \in S(c)\}$ is considered. The vectors c^T such that $\overline{\lambda(c)} < 1$ are identified and in those cases, nontrivial upper bounds on $\overline{\lambda(c)}$ and weak ergodicity results for forward products are provided. The results are obtained via a mix of analytic and combinatorial techniques.

Key words. Stochastic matrix, Subdominant eigenvalue, Bipartite graph.

AMS subject classifications. 15A51, 15A18, 15A42, 60J10.

 $^{^{\}ast}$ Received by the editors August 16, 2009. Accepted for publication December 9, 2009. Handling Editor: Michael Neumann.

[†]Hamilton Institute, National University of Ireland Maynooth, Ireland (stephen.kirkland@nuim.ie). Research supported in part by the SFI Stokes Programme.