

SPECTRALLY ARBITRARY COMPLEX SIGN PATTERN MATRICES*

YUBIN GAO[†], YANLING SHAO[†], AND YIZHENG FAN[‡]

Abstract. An $n \times n$ complex sign pattern matrix S is said to be spectrally arbitrary if for every monic *n*th degree polynomial $f(\lambda)$ with coefficients from \mathbb{C} , there is a complex matrix in the complex sign pattern class of S such that its characteristic polynomial is $f(\lambda)$. If S is a spectrally arbitrary complex sign pattern matrix, and no proper subpattern of S is spectrally arbitrary, then S is a minimal spectrally arbitrary complex sign pattern matrix. This paper extends the Nilpotent-Jacobian method for sign pattern matrices to complex sign pattern matrices, establishing a means to show that an irreducible complex sign pattern matrix and all its superpatterns are spectrally arbitrary. This method is then applied to prove that for every $n \ge 2$ there exists an $n \times n$ irreducible, spectrally arbitrary complex sign pattern with exactly 3n nonzero entries. In addition, it is shown that every $n \times n$ irreducible, spectrally arbitrary complex sign pattern matrix has at least 3n - 1nonzero entries.

Key words. Complex sign pattern, Spectrally arbitrary pattern, Nilpotent.

AMS subject classifications. 15A18, 05C15.

^{*}Received by the editors August 13, 2009. Accepted for publication October 28, 2009. Handling Editor: Michael J. Tsatsomeros.

[†]Department of Mathematics, North University of China, Taiyuan, Shanxi 030051, P.R. China (ybgao@nuc.edu.cn, ylshao@nuc.edu.cn). Supported by NSF of Shanxi (No. 2007011017, 2008011009).

[‡]School of Mathematics and Computation Sciences, Anhui University, Hefei 230039, P.R. China (fanyz@ahu.edu.cn). Supported by NNSF of China (No. 10601001).