

PROBLEMS OF CLASSIFYING ASSOCIATIVE OR LIE ALGEBRAS OVER A FIELD OF CHARACTERISTIC NOT TWO AND FINITE METABELIAN GROUPS ARE WILD*

GENRICH BELITSKII[†], ANDRII R. DMYTRYSHYN[‡], RUVIM LIPYANSKI[†], VLADIMIR V. SERGEICHUK[§], AND ARKADY TSURKOV[†]

Abstract. Let \mathbb{F} be a field of characteristic different from 2. It is shown that the problems of classifying

- (i) local commutative associative algebras over $\mathbb F$ with zero cube radical,
- (ii) Lie algebras over \mathbb{F} with central commutator subalgebra of dimension 3, and
- (iii) finite p-groups of exponent p with central commutator subgroup of order p^3

are hopeless since each of them contains

- the problem of classifying symmetric bilinear mappings $U \times U \rightarrow V$, or
- the problem of classifying skew-symmetric bilinear mappings $U\times U\to V,$

in which U and V are vector spaces over \mathbb{F} (consisting of p elements for p-groups (iii)) and V is 3-dimensional. The latter two problems are hopeless since they are wild; i.e., each of them contains the problem of classifying pairs of matrices over \mathbb{F} up to similarity.

 ${\bf Key}$ words. Wild problems, Classification, Associative algebras, Lie algebras, Metabelian groups.

AMS subject classifications. 15A21, 16G60.

^{*}Received by the editors December 25, 2008. Accepted for publication August 7, 2009. Handling Editor: Robert Guralnick.

[†]Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel (genrich@cs.bgu.ac.il, lipyansk@cs.bgu.ac.il, tsurkov@bgu.ac.il).

[‡]Faculty of Mechanics and Mathematics, Kiev National Taras Shevchenko University, Kiev, Ukraine (andriidmytryshyn@ukr.net).

[§]Institute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine (sergeich@imath.kiev.ua). The research was done while this author was visiting the Ben-Gurion University of the Negev.