

EXPLICIT SOLUTIONS OF REGULAR LINEAR DISCRETE-TIME DESCRIPTOR SYSTEMS WITH CONSTANT COEFFICIENTS*

TOBIAS BRÜLL †

Abstract. Explicit solution formulas are presented for systems of the form $Ex^{k+1} = Ax^k + f^k$ with $k \in \mathbb{K}$, where $\mathbb{K} \subset \mathbb{Z}$ is a discrete interval and the pencil $\lambda E - A$ is regular. Different results are obtained when one starts with an initial condition at the point k = 0 and calculates into the future (i.e., $Ex^{k+1} = Ax^k + f^k$ with $k \in \mathbb{N}$) and when one wants to get a complete solution (i.e., $Ex^{k+1} = Ax^k + f^k$ with $k \in \mathbb{Z}$).

Key words. Descriptor system, Strangeness index, Linear discrete descriptor system, Explicit solution, Backward Leslie model.

AMS subject classifications. 39A05, 15A06.

^{*} Received by the editors January 23, 2009. Accepted for publication July 3, 2009. Handling Editor: Peter Lancaster. This research is supported by the DFG Research Center MATHEON in Berlin.

 $^{^\}dagger Institut für Mathematik, TU Berlin, Straße des 17. Juni 136, D-10623 Berlin, Germany (bruell@math.tu-berlin.de).$