

THE ANTI-SYMMETRIC ORTHO-SYMMETRIC SOLUTIONS OF THE MATRIX EQUATION $A^T X A = D^*$

QING-FENG XIAO^{\dagger}, XI-YAN HU^{\dagger}, and LEI ZHANG^{\dagger}

Abstract. In this paper, the following problems are discussed.

Problem I. Given matrices $A \in \mathbb{R}^{n \times m}$ and $D \in \mathbb{R}^{m \times m}$, find $X \in AS\mathbb{R}^n_P$ such that $A^T X A = D$, where

 $ASR_P^n = \{ X \in ASR^{n \times n} | PX \in SR^{n \times n} \text{ for given } P \in OR^{n \times n} \text{ satisfying } P^T = P \}.$

Problem II. Given a matrix $\tilde{X} \in \mathbb{R}^{n \times n}$, find $\hat{X} \in S_E$ such that

$$\|\tilde{X} - \hat{X}\| = \inf_{X \in S_E} \|\tilde{X} - X\|,$$

where $\|\cdot\|$ is the Frobenius norm, and S_E is the solution set of Problem I.

Expressions for the general solution of Problem I are derived. Necessary and sufficient conditions for the solvability of Problem I are provided. For Problem II, an expression for the solution is given as well.

Key words. Anti-symmetric ortho-symmetric matrix, Matrix equation, Matrix nearness problem, Optimal approximation, Least-square solutions.

AMS subject classifications. 65F15, 65F20.

^{*}Received by the editors October 6, 2008. Accepted for publication on December 30, 2008. Handling Editor: Harm Bart.

[†]College of Mathematics and Econometrics, Hunan University, Changsha 410082, P.R. of China (qfxiao@hnu.cn). Research supported by National Natural Science Foundation of China (under Grant 10571047) and the Doctorate Foundation of the Ministry of Education of China (under Grant 20060532014).