THE ANTI-SYMMETRIC ORTHO-SYMMETRIC SOLUTIONS OF THE MATRIX EQUATION $A^{T} X A=D^{*}$

QING-FENG XIAO ${ }^{\dagger}$, XI-YAN HU^{\dagger}, AND LEI ZHANG ${ }^{\dagger}$

Abstract. In this paper, the following problems are discussed.
Problem I. Given matrices $A \in R^{n \times m}$ and $D \in R^{m \times m}$, find $X \in A S R_{P}^{n}$ such that $A^{T} X A=D$, where

$$
A S R_{P}^{n}=\left\{X \in A S R^{n \times n} \mid P X \in S R^{n \times n} \text { for given } P \in O R^{n \times n} \text { satisfying } P^{T}=P\right\}
$$

Problem II. Given a matrix $\tilde{X} \in R^{n \times n}$, find $\hat{X} \in S_{E}$ such that

$$
\|\tilde{X}-\hat{X}\|=\inf _{X \in S_{E}}\|\tilde{X}-X\|
$$

where $\|\cdot\|$ is the Frobenius norm, and S_{E} is the solution set of Problem I.
Expressions for the general solution of Problem I are derived. Necessary and sufficient conditions for the solvability of Problem I are provided. For Problem II, an expression for the solution is given as well.

Key words. Anti-symmetric ortho-symmetric matrix, Matrix equation, Matrix nearness problem, Optimal approximation, Least-square solutions.

AMS subject classifications. 65F15, 65F20.

[^0]
[^0]: *Received by the editors October 6, 2008. Accepted for publication on December 30, 2008. Handling Editor: Harm Bart.
 ${ }^{\dagger}$ College of Mathematics and Econometrics, Hunan University, Changsha 410082, P.R. of China (qfxiao@hnu.cn). Research supported by National Natural Science Foundation of China (under Grant 10571047) and the Doctorate Foundation of the Ministry of Education of China (under Grant 20060532014).

