ON THE MAXIMUM POSITIVE SEMI-DEFINITE NULLITY AND THE CYCLE MATROID OF GRAPHS*

HEIN VAN DER HOLST ${ }^{\dagger}$

Abstract

Let $G=(V, E)$ be a graph with $V=\{1,2, \ldots, n\}$, in which we allow parallel edges but no loops, and let $\mathcal{S}_{+}(G)$ be the set of all positive semi-definite $n \times n$ matrices $A=\left[a_{i, j}\right]$ with $a_{i, j}=0$ if $i \neq j$ and i and j are non-adjacent, $a_{i, j} \neq 0$ if $i \neq j$ and i and j are connected by exactly one edge, and $a_{i, j} \in \mathbb{R}$ if $i=j$ or i and j are connected by parallel edges. The maximum positive semi-definite nullity of G, denoted by $M_{+}(G)$, is the maximum nullity attained by any matrix $A \in \mathcal{S}_{+}(G)$. A k-separation of G is a pair of subgraphs $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1}\right) \cup V\left(G_{2}\right)=V$, $E\left(G_{1}\right) \cup E\left(G_{2}\right)=E, E\left(G_{1}\right) \cap E\left(G_{2}\right)=\emptyset$ and $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right|=k$. When G has a k-separation $\left(G_{1}, G_{2}\right)$ with $k \leq 2$, we give a formula for the maximum positive semi-definite nullity of G in terms of G_{1}, G_{2}, and in case of $k=2$, also two other specified graphs. For a graph G, let c_{G} denote the number of components in G. As a corollary of the result on k-separations with $k \leq 2$, we obtain that $M_{+}(G)-c_{G}=M_{+}\left(G^{\prime}\right)-c_{G^{\prime}}$ for graphs G and G^{\prime} that have isomorphic cycle matroids.

Key words. Positive semi-definite matrices, Nullity, Graphs, Separation, Matroids.

AMS subject classifications. 05C50, 15A18.

[^0]
[^0]: *Received by the editors July 30, 2007. Accepted for publication February 25, 2009. Handling Editor: Bryan L. Shader.
 ${ }^{\dagger}$ Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands (H.v.d.Holst@tue.nl).

