OPERATOR NORMS OF WORDS FORMED FROM POSITIVE-DEFINITE MATRICES*

S.W. DRURY ${ }^{\dagger}$

Abstract. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \beta_{1}, \beta_{2}, \ldots, \beta_{n}$ be strictly positive reals with $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=$ $\beta_{1}+\beta_{2}+\cdots+\beta_{n}=s$. In this paper, the inequality

$$
\left\|A^{\alpha_{1}} B^{\beta_{1}} A^{\alpha_{2}} \cdots A^{\alpha_{n}} B^{\beta_{n}}\right\|\|\leq\| A B \|^{s}
$$

when A and B are positive-definite matrices is studied. Related questions are also studied.

Key words. Positive-definite matrix, Matrix power, Operator norm, Matrix words.

AMS subject classifications. 15A45.

[^0]
[^0]: * Received by the editors July 31, 2008. Accepted for publication December 29, 2008. Handling Editor: Harm Bart
 ${ }^{\dagger}$ Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, Canada H3A 2K6.

