

## CERTAIN MATRICES RELATED TO THE FIBONACCI SEQUENCE HAVING RECURSIVE ENTRIES\*

A. R. MOGHADDAMFAR<sup>†</sup>, S. NAVID SALEHY<sup>†</sup>, AND S. NIMA SALEHY<sup>†</sup>

**Abstract.** Let  $\phi = (\phi_i)_{i \ge 1}$  and  $\psi = (\psi_i)_{i \ge 1}$  be two arbitrary sequences with  $\phi_1 = \psi_1$ . Let  $A_{\phi,\psi}(n)$  denote the matrix of order n with entries  $a_{i,j}, 1 \le i, j \le n$ , where  $a_{1,j} = \phi_j$  and  $a_{i,1} = \psi_i$  for  $1 \le i \le n$ , and where  $a_{i,j} = a_{i-1,j-1} + a_{i-1,j}$  for  $2 \le i, j \le n$ . It is of interest to evaluate the determinant of  $A_{\phi,\psi}(n)$ , where one of the sequences  $\phi$  or  $\psi$  is the Fibonacci sequence (i.e., 1, 1, 2, 3, 5, 8, ...) and the other is one of the following sequences:

$$\begin{split} &\alpha^{(k)} = \overbrace{(1,1,\ldots,1,0,0,0,\ldots)}^{k-\text{times}}, \\ &\chi^{(k)} = (1^k,2^k,3^k,\ldots,i^k,\ldots), \\ &\xi^{(k)} = (1,k,k^2,\ldots,k^{i-1},\ldots) \quad (\text{a geometric sequence}), \\ &\gamma^{(k)} = (1,1+k,1+2k,\ldots,1+(i-1)k,\ldots) \quad (\text{an arithmetic sequence}). \end{split}$$

For some sequences of the above type the inverse of  $A_{\phi,\psi}(n)$  is found. In the final part of this paper, the determinant of a generalized Pascal triangle associated to the Fibonacci sequence is found.

**Key words.** Inverse matrix, Determinant, LU-factorization, Fibonacci sequence, Generalized Pascal triangle, Recursive relation.

AMS subject classifications. 15A09, 11B39.

<sup>\*</sup>Received by the editors 24 February 2008. Accepted for publication 11 November 2008. Handling Editor: Michael Neumann.

<sup>&</sup>lt;sup>†</sup>Department of Mathematics, Faculty of Science, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran, Iran (moghadam@kntu.ac.ir) and Institute for Studies in Theoretical Physics and Mathematics (IPM) (moghadam@mail.ipm.ir). This research was in part supported by a grant from IPM (No. 85200038).