CERTAIN MATRICES RELATED TO THE FIBONACCI SEQUENCE HAVING RECURSIVE ENTRIES*

A. R. MOGHADDAMFAR ${ }^{\dagger}$, S. NAVID SALEHY ${ }^{\dagger}$, AND S. NIMA SALEHY ${ }^{\dagger}$

Abstract

Let $\phi=\left(\phi_{i}\right)_{i \geq 1}$ and $\psi=\left(\psi_{i}\right)_{i \geq 1}$ be two arbitrary sequences with $\phi_{1}=\psi_{1}$. Let $A_{\phi, \psi}(n)$ denote the matrix of order n with entries $a_{i, j}, 1 \leq i, j \leq n$, where $a_{1, j}=\phi_{j}$ and $a_{i, 1}=\psi_{i}$ for $1 \leq i \leq n$, and where $a_{i, j}=a_{i-1, j-1}+a_{i-1, j}$ for $2 \leq i, j \leq n$. It is of interest to evaluate the determinant of $A_{\phi, \psi}(n)$, where one of the sequences ϕ or ψ is the Fibonacci sequence (i.e., $1,1,2,3,5,8, \ldots)$ and the other is one of the following sequences: $$
\begin{aligned} & \alpha^{(k)}=(\overbrace{1,1, \ldots, 1}^{k-\text { times }}, 0,0,0, \ldots), \\ & \chi^{(k)}=\left(1^{k}, 2^{k}, 3^{k}, \ldots, i^{k}, \ldots\right), \\ & \xi^{(k)}=\left(1, k, k^{2}, \ldots, k^{i-1}, \ldots\right) \quad(\text { a geometric sequence }), \\ & \gamma^{(k)}=(1,1+k, 1+2 k, \ldots, 1+(i-1) k, \ldots) \quad \text { (an arithmetic sequence) } . \end{aligned}
$$

For some sequences of the above type the inverse of $A_{\phi, \psi}(n)$ is found. In the final part of this paper, the determinant of a generalized Pascal triangle associated to the Fibonacci sequence is found.

Key words. Inverse matrix, Determinant, LU-factorization, Fibonacci sequence, Generalized Pascal triangle, Recursive relation.

AMS subject classifications. 15A09, 11B39.

[^0]
[^0]: *Received by the editors 24 February 2008. Accepted for publication 11 November 2008. Handling Editor: Michael Neumann.
 ${ }^{\dagger}$ Department of Mathematics, Faculty of Science, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran, Iran (moghadam@kntu.ac.ir) and Institute for Studies in Theoretical Physics and Mathematics (IPM) (moghadam@mail.ipm.ir). This research was in part supported by a grant from IPM (No. 85200038).

