

STABLE SUBNORMS ON FINITE-DIMENSIONAL POWER-ASSOCIATIVE ALGEBRAS*

MOSHE GOLDBERG^{\dagger}

Abstract. Let \mathcal{A} be a finite-dimensional power-associative algebra over a field \mathbb{F} , either \mathbb{R} or \mathbb{C} , and let \mathcal{S} , a subset of \mathcal{A} , be closed under scalar multiplication. A real-valued function f on \mathcal{S} is called a *subnorm* if f(a) > 0 for all $0 \neq a \in \mathcal{S}$, and $f(\alpha a) = |\alpha| f(a)$ for all $a \in \mathcal{S}$ and $\alpha \in \mathbb{F}$. If in addition, \mathcal{S} is closed under raising to powers, then a subnorm f is said to be *stable* if there exists a positive constant σ so that

$$f(a^k) \leq \sigma f(a)^k$$
 for all $a \in S$ and $k = 1, 2, 3, \dots$

The purpose of this paper is to provide an updated account of our study of stable subnorms on subsets of finite-dimensional power-associative algebras over \mathbb{F} . Our aim is to review and discuss some of the results in several previous papers, dealing with both continuous and discontinuous subnorms.

Key words. Finite-dimensional power-associative algebras, Norms, Subnorms, Subnoduli, Stable subnorms, Minimal polynomial, Radius of an element in a finite-dimensional power-associative algebra.

AMS subject classifications. 15A60, 16B99, 17A05.

^{*}Received by the editors January 19, 2008. Accepted for publication July 21, 2008. Handling Editor: Robert Guralnick.

[†] Department of Mathematics, Technion – Israel Institute of Technology, Haifa 32000, Israel (goldberg@math.technion.ac.il).