POSITIVE DEFINITE SOLUTION OF THE MATRIX EQUATION $X=Q+A^{H}(I \otimes X-C)^{-\delta} A^{*}$

GUOZHU YAO^{\dagger}, ANPING LIAO ${ }^{\ddagger}$, AND XUEFENG DUAN \S

Abstract

We consider the nonlinear matrix equation $X=Q+A^{H}(I \otimes X-C)^{-\delta} A(0<\delta \leq 1)$, where Q is an $n \times n$ positive definite matrix, C is an $m n \times m n$ positive semidefinite matrix, I is the $m \times m$ identity matrix, and A is an arbitrary $m n \times n$ matrix. We prove the existence and uniqueness of the solution which is contained in some subset of the positive definite matrices under the condition that $I \otimes Q>C$. Two bounds for the solution of the equation are derived. This equation is related to an interpolation problem when $\delta=1$. Some known results in interpolation theory are improved and extended.

Key words. Nonlinear matrix equation, Positive definite solution, Interpolation theory.

AMS subject classifications. 15A24, 65 H 05 .

[^0]
[^0]: *Received by the editors on June 10, 2009. Accepted for publication on July 31, 2010. Handling Editors: Roger A. Horn and Fuzhen Zhang.
 ${ }^{\dagger}$ College of Mathematics and Computing Science, Changsha University of Science and Technology, Changsha 410114, P.R. China (gzyao@163.com). Supported by Hunan Provincial Educational Department Science Foundation (10C0370).
 \ddagger College of Mathematics and Econometrics, Hunan University, Changsha 410082, P.R. China
 §School of Mathematics and Computational Science, Guilin University of Electronic Technology, Guilin 541004, P.R. China.

