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OSCILLATION OF SOLUTIONS TO A HIGHER-ORDER

NEUTRAL PDE WITH DISTRIBUTED DEVIATING

ARGUMENTS

JULIO G. DIX

Abstract. This article presents conditions for the oscillation of solutions to
neutral partial differential equations. The order of these equations can be even
or odd, and the deviating arguments can be distributed over an interval. We
also extend our results to a nonlinear equation and to a system of equations.

1. Introduction

We study the oscillation of solutions to the neutral differential equation

∂n

∂tn

(

u(x, t) +

∫ b

a

p(t, ξ)u(x, r(t, ξ)) dµ(ξ)
)

=

m2
∑

j=1

aj(t)∆u(x, hj(t)) −

∫ d

c

q(x, t, ξ)u(x, g(t, ξ)) dµ(ξ),

(1.1)

where x is in a bounded domain Ω of R
d, with smooth boundary ∂Ω, t ≥ 0, and

the delayed arguments satisfy r(t, ξ) ≤ t, hj(t) ≤ t, g(t, ξ) ≤ t. To this equation we
attach one of the following two boundary conditions:

u(x, t) = 0 x ∈ ∂Ω, t ≥ 0; (1.2)

∂u

∂ν
+ γ(x, t)u(x, t) = 0 x ∈ ∂Ω, t ≥ 0, (1.3)

where ν is the unit exterior normal vector to ∂Ω, and γ(x, t) is a positive function
in C(Ω × [0,∞), R). Here n, m2 are positive integers with n ≥ 2; aj(t), hj(t) are
in C([0,∞), R); g(t, ξ) is in C([0,∞) × [c, d], R); p(t, ξ) is in C([0,∞) × [a, b], R);
q(x, t, ξ) is in C(Ω × [0,∞) × [a, b], R); r(t, ξ) is in C([0,∞) × [a, b], R); p, r have
n continuous derivatives with respect to time; ∆ is the Laplacian operator, ∆ =
∂2

x2

1

+ · · · + ∂2
x2

d

; and the integrals are in the Stieltjes sense with µ non-decreasing.

Note that these integrals can represent summations of the form
∑

j pj(t)u(x, rj(t))

and
∑

j qj(x, t)u(x, gj(t)), which we call the summation case. The study of solutions
to neutral differential equations has practical importance, because they appear
in population models, chemical reactions, control systems, etc. There are many
publications related to the oscillation of solutions to neutral ordinary differential
equations; see for example [2, 6, 11, 12, 13] and the books [1, 3, 4, 7]. There are
also some publications for neutral partial differential equations, see for example
[8, 9, 10, 14]. Li [8] stated that solutions to a system of type (1.1) are oscillatory
for n odd. However their article has many mistakes: On page 527 “There exist
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M > 0 such that v(t) ≥ M” is not true when y decreases to zero; Lemma 2 needs
the assumption that W is eventually positive; etc. Lin [9] studied a system of
neutral PDEs, with n even; we will compare their hypotheses and ours in Section
3. Wang [14] stated that for a particular case of (1.1) all solutions are oscillatory.
This is not true for n odd; it is easy to build an example with solution sin(x)e−t,
which is non-oscillatory for 0 ≤ x ≤ π. On page 570, it says “By choosing i = 1, we
have z′(t) > 0”, which is used later. However, by Lemma 2.1 with n odd, i can be
zero and their proof fails. Luo [10] studied a system of PDEs. Their proof follows
the steps in [14], including mistakes, so it fails for n odd. The main objective of
this article is to present verifiable hypotheses for the oscillation of solutions to (1.1)
for even and odd order, with various ranges for the coefficient p(t). In Section 3, we
extend our results to a nonlinear neutral equation and to an equation of the type
type studied in [9]. In Section 4, we apply our results to a system of neutral partial
differential equations.

2. Oscillation for the neutral PDE

By a solution, u(x, t), we mean a function in C(Ω × [t ,∞), R) that is twice
continuously differentiable for x ∈ Ω, and n times continuously differentiable for
t ≥ 0, and that satisfies (1.1) with a boundary condition (1.2) or (1.3). The value
t is the minimum of value of functions r, hj , g when t ≥ 0. A solution u(x, t) is
called eventually positive if there exists t0 such that u(x, t) > 0 for t ≥ t0 and all x
in the interior of Ω. Eventually negative solutions are defined similarly. Solutions
that are not eventually positive and not eventually negative are called oscillatory;
i.e., for every t0 ≥ 0, there exist t1 ≥ t0 and x1 in the interior of Ω, such that
u(x1, t1) = 0. The following hypotheses will be used in this article.

(H1) 0 ≤ aj(t) with 0 <
∑m2

j=1 aj(t) for t ≥ 0.

There exists a continuous function ĝ(t) such that ĝ(t) ≤ g(t, ξ) and for all
t, ξ (in the summation case: ĝ(t) ≤ gj(t) for all j).
hj(t), ĝ(t), r(t, ξ) approach +∞ as t → ∞, for all ξ ∈ [a, b], j ∈ {1, . . . , m2};
Also,

0 ≤ min
x∈Ω

q(x, t, ξ) := Q(t, ξ), 0 ≤ min
x∈Ω

qj(x, t) := Qj(t) .

We use the well known “averaging technique” to transform the partial differential
equation into a delay differential inequality. The existence (and non-existence)
of eventually positive solutions to this inequality, provides oscillation results for
neutral differential equations; see for example [3, Theorem 5.1.1]. Let λ1 be the
smallest eigenvalue of the elliptic problem

∆φ + λφ = 0 in Ω

φ(x) = 0 on ∂Ω .

It is well know that λ1 > 0 and that the corresponding eigenfunction φ1 does not
have zeros in the interior of Ω; we select φ1(x) > 0. See for example [5, Theorem
8.5.4]. Assuming that u(x, t) is a solution to (1.1)-(1.2) with u(x, t) > 0 for t ≥ t0,
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we define the “average function”

v(t) =

∫

Ω

u(x, t)φ1(x) dx (2.1)

which is positive because both u and φ1 are positive. Note that v is the projection
of u on the first eigenspace of the Laplacian. By Green’s formula,

∫

Ω

∆u(x, t)φ1(x) dx =

∫

∂Ω

φ1
∂u

∂ν
− u

∂φ1

∂ν
dS +

∫

∂Ω

u∆φ1 dS

= −λ1

∫

Ω

u(x, t)φ1(x) dx < 0 .

(2.2)

We multiply each term in (1.1) by the eigenfunction φ1, and integrate over Ω. Using
(2.1), (2.2), (H1), and the notation

z(t) = v(t) +

∫ b

a

p(t, ξ)v(r(t, ξ)) dµ(ξ) , (2.3)

the PDE (1.1) is transformed into the delay differential inequality

z(n)(t) < −

∫ b

a

Q(t, ξ)v(g(t, ξ)) dµ(ξ) ,

z(n)(t) < −

m1
∑

j=1

Qj(t)v(gj(t)) (for the summation case) .

(2.4)

Now for the boundary condition (1.3), assuming that u(x, t) is a positive solution
to (1.1)-(1.3), we define the “average function”

v(t) =

∫

Ω

u(x, t) dx (2.5)

which is positive. By Green’s formula,
∫

Ω

∆u(x, t) dx =

∫

∂Ω

∂u

∂ν
= −

∫

Ω

γ(x, t)u(x, t) dx < 0 . (2.6)

Using this inequality, (2.5) and (H1), we obtain (2.4) again.

Lemma 2.1 ([7, Lemma 5.2.1]). Let z(t) be an n times differentiable function of
constant sign, z(n)(t) be of constant sign and not identically zero in any interval
[t0,∞) and z(n)(t)z(t) ≤ 0. Then

(i) There exists a time t1 such that z(0), z(1), . . . , z(n−1) are of constant sign
on [t1,∞).

(ii) There exists an integer k in {1, 3, 5, . . . , n − 1} when n is even, and k in
{0, 2, 4, . . . , n − 1} when n is odd, such that

z(i)(t)z(t) > 0 for i = 0, 1, . . . , k,

(−1)n+i−1z(i)(t)z(t) > 0 for i = k + 1, . . . , n .
(2.7)

Remark: In our settings z(n)(t) < 0 for t ≥ t1, which satisfies the “not identically
zero” condition in the above lemma. However, this part was not shown in Wang
[14] and Luo [10]. There it was also wrongly assumed that z(t) is always increasing.
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Lemma 2.2 ([7, Lemma 5.2.2]). Assume that z(0), z(1), . . . , z(n−1) are absolutely
continuous and of constant sign on the interval (t0,∞). Moreover, z(n)(t)z(t) ≥ 0.
Then either

z(i)(t)z(t) ≥ 0 for i = 0, 1, . . . , n,

or there exists an integer k in {0, 2, . . . , n−2} when n is even, and k in {1, 3, . . . , n−
2} when n is odd, such that

z(i)(t)z(t) ≥ 0 for i = 0, 1, . . . , k,

(−1)n+iz(i)(t) ≥ 0 for i = k + 1, . . . , n,
(2.8)

Lemma 2.3 ([7, Lemma 5.2.3]). Let z(t) be an n times differentiable function of
constant sign, z(n)(t) be of constant sign and not identically zero in any interval
[t0,∞), and z(n)(t)z(n−1)(t) ≤ 0 for every t ≥ t0. Then for each 0 < λ < 1,

|z(λt)| ≥ M1t
n−1|z(n−1)(t)|, M1 =

λk(1 − λ)n−1−k

2kk!(n − 1 − k)!
,

where K is defined in Lemma 2.1 (ii).

Our first result concerns the equation

∂n

∂tn

(

u(x, t) +

∫ b

a

p(t, ξ)u(x, r(t, ξ)) dµ(ξ)
)

=

m2
∑

j=1

aj(t)∆u(x, hj(t)) −

m1
∑

j=1

qj(x, t)uj(x, g(t))

(2.9)

with boundary conditions (1.2) or (1.3). This equation is a particular case of
(1.1), when µ is constant on [c, d], except at m1 values of ξ, where it has jumps of
discontinuity.

Theorem 2.4. Assume (H1), 0 ≤ p(t, ξ) and
∫ ∞

0

m1
∑

j=1

Qj(t) dt = ∞ . (2.10)

Then every solution of (2.9) is oscillatory or its “average” v(t) converges to zero,
as t → ∞.

Proof. Assuming that u(x, t) is an eventually positive solution of (2.9), we show
that the “average” function approaches zero. By (H1) there exists a time t0 such
that u(x, t), u(x, r(t, ξ)), u(x, hj(t)), and u(x, gi(t)) are positive for all t ≥ t0 and all
j, ξ. Then we define z by (2.3), so that z(t) > 0, and (2.4) and (2.7) hold. For the
value k defined in (2.7), the function z(k)(t) is positive and decreasing. Therefore,
L := limt→∞ z(k)(t) exists as a finite number. Note that

0 ≤ z(k)(t) − L =
(−1)n−k

(n − 1 − k)!

∫ ∞

t

(s − t)n−1−kz(n)(s) ds . (2.11)

Note that the left-hand side is a finite number for each t; therefore, the integral
on the right-hand side is convergent. From (2.4), it follows that for every j ∈
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{1, . . . , m1},

0 ≤

∫ ∞

0

tn−1−kQj(t)v(gj(t)) dt < ∞ .

Using (2.10) and the limit comparison test,

lim sup
t→∞

tn−1−kQj(t)v(gj(t))

Qj(t)
= 0

for at least one index j. Since 0 ≤ k ≤ n − 1, for this index, limt→∞ v(gj(t)) = 0.
Since gj is continuous and approaches ∞ as t → ∞, we have limt→∞ v(t) = 0.
For an eventually negative solution u, we note that −u is also a solution and it is
eventually positive. This completes the proof. �

In the next theorem, we relax the conditions on Qj , but restrict the values of
p(t, ξ).

Theorem 2.5. Assume: (H1) holds; there exist a positive constant p̂ such that

0 ≤
∫ b

a
p(t, ξ) dµ(ξ) ≤ p̂ < 1 for t > 0; ĝ(t) is differentiable and strictly increasing;

and there exist positive constants α, γ such that γtα ≤ ĝ(t) for t sufficiently large,
and β with 0 ≤ β < α(n − 1) such that

∫ ∞

0

tβ
m1
∑

j=1

Qj(t) dt = ∞ . (2.12)

Then every solution of (2.9) is oscillatory or its “average” v(t) converges to zero
as t → ∞.

Proof. Assuming that u(x, t) is an eventually positive solution, we show that the
“average” function approaches zero. Define z by (2.3), so that z(t) is positive, and
(2.4) and (2.7) hold.

Case 1: z(t) is decreasing. In this case k = 0 in (2.7); thus L := limt→∞ z(t)
exists as a finite number. The same process as in the proof of Theorem 2.4 shows
that limt→∞ v(t) = 0.

Case 2: z(t) is increasing. This happens when n is even, because k ≥ 1 in (2.7),
and sometimes when n is odd. Note that r(t, ξ) ≤ t and z(r) ≤ z(t). Also note
that v(r) ≤ z(r), so that by (2.3),

(1 − p̂)z(t) ≤
(

1 −

∫ b

a

p(t, ξ) dµ(ξ)
)

z(t)

≤ z(t) −

∫ b

a

p(t, ξ)z(r) dµ(ξ)

≤ z(t) −

∫ b

a

p(t, ξ)v(r) dµ(ξ) = v(t) .

(2.13)

From (2.4), using that ĝ(t) ≤ g(t, ξ), we have

z(n)(t) < −z(ĝ(t))(1 − p̂)

m1
∑

j=1

Qj(t) , (2.14)
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Then for β ≥ 0, we define

w(t) =
z(n−1)(t)

z(1
2 ĝ(t))

tβ

and differentiate with respect to t,

w′(t) =
z(n)(t)

z(1
2 ĝ)

tβ −
z(n−1)(t)z′(1

2 ĝ)1
2 ĝ′(t)

(z(1
2 ĝ))2

tβ +
z(n)(t)

z(1
2 ĝ)

βtβ−1 .

To estimate the first term in the right-hand side, we use (2.14) and the fact that
z(ĝ)/z(1

2 ĝ) ≥ 1 because z is increasing. To estimate the second term, we use Lemma
2.3. Since 0 ≤ k ≤ n− 1, we can make M1 independent of k, hence independent of
the function z. By setting λ = 1/2 and using z′ instead of z and ĝ(t) instead of t,
we have constants M and t2 such that

z′(
1

2
ĝ(t)) ≥ M(ĝ(t))n−2z(n−1)(ĝ(t)), for t ≥ t2 . (2.15)

To estimate the third term, we multiply and divide by tβ. Then

w′(t) ≤ −tβ(1 − p̂)

m1
∑

j=1

Qj(t) −
[Mĝn−2ĝ′

2tβ
w2 −

β

t
w

]

.

By completing the square in the brackets,

w′(t) ≤ −tβ(1 − p̂)

m1
∑

j=1

Qj(t) +
β2tβ−2

2Mĝn−2(t)ĝ′(t)
.

Integrating from t1 to s,

w(s) ≤ w(t1) −

∫ s

t1

tβ(1 − p̂)

m1
∑

j=1

Qj(t) +

∫ s

t1

β2tβ−2

2Mĝn−2(t)ĝ′(t)
dt .

Note that the left-hand side remains positive while the right-hand side approaches
−∞ as x → ∞. By (2.12) the first integral approaches ∞ while the second inte-
gral converges as explained below. This contradiction indicates that there are no
eventually positive solutions under assumption (2.12). To study the convergence of
the second integral, we use the limit comparison test and L’Hôpital’s Rule, so that
∫ ∞

tβ−2 1
ĝn−2ĝ′

and
∫ ∞

tβ−2 t
ĝn−1 both converge or both diverge. Now, we use the

comparison test,

0 <
tβ−1

ĝn−1
≤

tβ−1

γn−1tα(n−1)
=

1

γn−1
tβ−1−α(n−1) .

By the p-test, the integral converges if β−1−α(n−1) < −1; i.e., β < α(n−1) which
is assumed in this theorem. For an eventually negative solution u, we note that −u
is also a solution and it is eventually positive. This completes the proof. �

Remark. Instead of tβ , Wang [14] and Luo [10] used a positive nondecreasing
function. They also used a function H(t, s)ρ(s). However, their hypotheses are not
easy to verify, and do not seem to cover a much wider range of coefficients for (1.1).
An increasing function φ(t) played the role of tβ in [9], for n even. In the next
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theorem, we restrict n to be even, so we can study the case when
∑

Q is replaced
by

∫

Q. Also we obtain results stronger than in Theorem 2.5.

Theorem 2.6. Assume: (H1) holds; n is even; there exist a positive constant p̂

such that 0 ≤
∫ b

a
p(t, ξ) dµ(ξ) ≤ p̂ < 1 for t > 0; ĝ(t) is differentiable and strictly

increasing; there exist positive constants α, γ such that γtα ≤ ĝ(t) for t sufficiently
large; and there exists β with 0 ≤ β < α(n − 1) such that

∫ ∞

0

tβ
∫ d

c

Q(t, ξ) dµ(ξ) = ∞ . (2.16)

Then every solution of (1.1) is oscillatory.

Proof. Assuming that u(x, t) is an eventually positive solution, we find a contradic-
tion. Define z by (2.3), so that z(t) is positive, and (2.4) and (2.7) hold. Because
n is even, k ≥ 1 in (2.7); therefore z(t) is positive and increasing. The rest of the

proof is as in the proof of case 2 in Theorem 2.5, except for using
∫ d

c
Qt, ξ) instead

of
∑m1

j=1 Qj(t). �

Note that α in Theorems 2.5 and 2.6 can not exceed 1, because ĝ(t) ≤ t. Also
note that when α = 1, the exponent β can be close to n− 1, which seems to be the
optimal exponent, even for special cases of (1.1); see [3, Theorem 5.2.6] Next, we
allow the coefficient p1 to be negative in the equation

∂n

∂tn

(

u(x, t) + p1(t)u(x, r1(t))
)

=

m2
∑

j=1

aj(t)∆u(x, hj(t)) −

m1
∑

j=1

qj(x, t)u(x, gj(t)) ,
(2.17)

with boundary conditions (1.2) or (1.3).

Theorem 2.7. Assume (H1) holds; there exists a constant p̂ such that p̂ < p1(t) ≤
0; and

∫ ∞

0

m1
∑

j=1

Qj(t) dt = ∞ .

Then every solution of (2.17) is oscillatory, or its “average” v(t) converges to zero,
or v(t) approaches infinity at least at the rate of tn−2 (as t → ∞).

Proof. Assuming that u(x, t) is an eventually positive solution, we show that the
“average” function approaches zero, or the “average” is bounded below a constant
times tn−2 for t large. Define z by (2.3). Then (2.4) holds and z(n)(t) < 0, for
t ≥ t0. As in Lemma 2.1(i), there exists a t1 ≥ t0 such that z(0)(t), . . . , z(n−1)(t)
are of constant sign on [t1,∞).

Case 1: z(i)(t) > 0 for some i ∈ {0, . . . , n − 1}. Then the conditions of Lemma
2.1 are satisfied with z(i)(t) instead of z(t). We proceed as in the proof of Theorem
2.4 to show that limt→∞ v(t) = 0.

Case 2: z(i)(t) < 0 for all i ∈ {0, . . . , n − 1}. By a repeated integration of z(n),
we obtain a negative constant M , such that z(t) < Mtn−2 for t sufficiently large.
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From (2.3) and p̂ < p1(t), we obtain z(t) = v(t) + p1(t)v(r1(t)) > p̂v(r1(t)). Since
r1(t) ≤ t, we have

v(r1(t))

(r1(t))n−2
≥

v(r1(t))

tn−2
>

M

p̂
> 0 .

Recall that limt→∞ r1(t) = ∞. Therefore, v(t) ≥ Mtn−2/p̂ for all t sufficiently
large. This completes the proof. �

In the next theorem, we impose restrictions on n, r1 and p1, so that we obtain
results stronger than those in Theorem 2.7.

Theorem 2.8. Assume (H1) holds, n is odd, −1 ≤ p1(t) ≤ 0, r1(t) is strictly
increasing, and

∫ ∞

0

m1
∑

j=1

Qj(t) dt = ∞ .

Then every solution of (2.17) is oscillatory, or its “average” v(t) converges to zero.

Proof. Assuming that u(x, t) is an eventually positive solution, we show that the
“average” function approaches zero. Define z by (2.3). Then (2.4) holds and
zn(t) < 0, for t ≥ t0. As in Lemma 2.1(i), there exists a t1 ≥ t0 such that
z(0)(t), . . . , z(n−1)(t) are of constant sign on [t1,∞).
Claim: z(t) > 0 for t ≥ t1. The proof of this claim is a generalization of the proof
in [3, Lemma 5.14]. On the contrary assume that z(t) < 0 for t ≥ t1. Since n is odd
and z(n)(t) < 0, by Lemma 2.2, z(1)(t) < 0. Thus z(t) is negative and decreasing.
For t > t1, we have

0 > z(t1) > z(t) = v(t) + p1(t)v(r1(t)) ≥ v(t) − v(r1(t)) .

For t, r−1
1 (t), r−1

1 (r−1
1 (t)), . . . , the above inequality yields z(t1) > v(t) − v(r1(t)),

z(t1) > v(r−1
1 (t))− v(t), z(t1) > v(r−1

1 (r−1
1 (t)))− v(r−1

1 (t)), . . . . Adding k of these
inequalities, we have

kz(t1) > v(r−1
1 (r−1

1 . . . (t))) − v(r1(t)) ≥ −v(r1(t))

For a fixed value of t, the left-hand side approaches −∞ as k → ∞, while the right-
hand side is a finite number. This contradiction proves the claim. Once we know
that z(t) is positive, we proceed as in Theorem 2.4 to show that limt→∞ v(t) =
0. �

3. Oscillation for related neutral PDEs

In this section, we study a nonlinear PDE, and then an equation more general
than (1.1). We consider the neutral differential equation

∂n

∂tn

(

u(x, t) +

∫ b

a

p(t, ξ)u(x, r(t, ξ)) dµ(ξ)
)

=

m2
∑

j=1

aj(t)∆u(x, hj(t)) − q(x, t)F
(

u(x, g1(t)), . . . , u(x, gm1
(t))

)

,

(3.1)

where F ∈ C(Rm1 → R) satisfies the following two properties: If uj > 0 for all
j ∈ {1, . . . , m1}, then F (u1, . . . , um1

) ≥ uj for all j; if uj < 0 for all j ∈ {1, . . . , m1},
EJQTDE, 2010 No. 59, p. 8



then F (u1, . . . , um1
) ≤ uj for all j. The conditions in (H1) are also assumed with

the part corresponding to q replaced by

0 ≤ min
x∈Ω

q(x, t) := Q(t) .

For defining the “average” v(t), we consider the eventually positive and eventually
negative solutions separately. When u(x, t) > 0, define v(t) by (2.1), and z(t) by
(2.3). Then instead of 2.4 we obtain

z(n)(t) < −Q(t)v(gj(t)) for all j ∈ {1, . . . , m1} . (3.2)

When u(x, t) < 0, for the boundary condition (1.2), define v(t) = −
∫

Ω φ(x)u(x, t) dx
so that v(t) > 0. Then multiply each term in (3.1) by −φ(x) and integrate over Ω.
Using the assumptions on F , we obtain (3.2) again. For the boundary condition
(1.3), define v(t) = −

∫

Ω u(x, t) dx so that v(t) > 0. Then multiply each term in
(3.1) by −1 and integrate over Ω. Using the assumptions on F , we obtain (3.2)
again. Once the differential inequality (3.2) is established for non-oscillatory solu-
tions, the results in Theorems 2.4, 2.5, 2.6, 2.7, 2.8 follow with a minor change in
notation: Use

∫ ∞

0 Q(t) = ∞ instead of
∫ ∞

0

∑

Qj(t) = ∞. The second equation to

be considered in this section is the neutral equation

∂

∂t

(

b(t)
∂n−1

∂tn−1

(

u(x, t) +

∫ b

a

p(t, ξ)u(x, r(t, ξ)) dµ(ξ)
))

=

m
∑

j=1

aj(t)∆u(x, hij(t)) −

m1
∑

j=1

qj(x, t)u(x, gj(t)),

(3.3)

where n ≥ 3, and b(t) is a positive function in C1([0,∞), R) such that
∫ ∞

0

1

b(t)
dt = ∞. (3.4)

A system of this form was studied in [9] when n is odd, with
∫

p replaced by
∑

cj ,
where 0 ≤

∑

cj < 1. Assuming that u(x, t) > 0 for t ≥ t0, we define z(t) by (2.3).
From (3.3) and each one of the two boundary conditions, (1.2) and (1.3), we have

(

b(t)z(n−1)(t)
)′

< −

m1
∑

j=1

Qj(t)v(gj(t)) for t ≥ t0 . (3.5)

Therefore, b(t)z(n−1)(t) is a decreasing function; hence, eventually positive or even-
tually negative.
Claim: b(t)z(n−1)(t) and z(n−1)(t) are eventually positive, when z(t) > 0. We
proceed as in [9]: If there is a time for which b(t)z(n−1)(t) ≤ 0, then because
b(t)z(n−1)(t) is decreasing, there is t1 such that for all t ≥ t1,

z(n−1)(t) ≤
1

b(t)
b(t1)z

(n−1)(t1) < 0 .

Integrating the above inequality, we obtain

z(n−2)(s) ≤ z(n−2)(t1) + b(t1)z
(n−1)(t1)

∫ s

t1

1

b(t)
dt .
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By (3.4), the right-hand side approaches −∞ as s → ∞; thus limt→∞ z(n−2)(t) =
−∞. Integrating z(n−2)(t), we show that limt→∞ z(n−3)(t) = −∞. Repeating
the integration, we show that z(n−4)(t), . . . , z(0)(t) approach −∞ as t → ∞. This
contradicts z(t) > 0, and proves that b(t)z(n−1)(t) is eventually positive, and so is
z(n−1)(t). The main result for (3.3) reads as follows.

Theorem 3.1. Assume: (H1) holds; there exist a positive constant p̂ such that

0 ≤
∫ b

a
p(t, ξ) dµ(ξ) ≤ p̂ < 1 for t > 0; b is bounded; and

∫ ∞

0

m1
∑

j=1

Qj(t) dt = ∞ .

Then every solution of (3.3) is oscillatory, or its “average” v(t) converges to zero,
or v(t) approaches infinity at least at the rate of tn−3 (as t → ∞).

Proof. Assuming that u(x, t) is an eventually positive solution of (3.3), we show
that the “average” function approaches zero, or the “average” is bounded below by
a constant times tn−3. By (H1) there exists a time t0 such that u(x, t), u(x, r(t, ξ)),
u(x, hj(t)), and u(x, gi(t)) are positive for all t ≥ t0 and all j, ξ. Then we define

z by (2.3), so that z(t) > 0. Then by the claim after (3.5), z(n−1)(t) > 0. As in
Lemma 2.1(i), there exists a t1 ≥ t0 such that z(0)(t), . . . , z(n−1)(t) are of constant
sign on [t1,∞). By Lemma 2.3 with n − 1 instead of n, we have only two possible
cases.

Case 1: z(i)(t) < 0 for some i ∈ {1, . . . , n − 2}. By Lemma 2.1, z(n−2)(t) is
negative and increasing; so L := limt→∞ z(n−2)(t) exists as finite number. Then
L− z(n−2)(t) =

∫ ∞

t
z(n−1)(s) ds. Therefore, limt→∞ z(n−1)(t) = 0 and because b(t)

is bounded, limt→∞ b(t)z(n−1)(t) = 0. Then using (3.2)

0 − b(t)z(n−1)(t) =

∫ ∞

t

(

b(s)z(n−1)(s)
)′

< −

∫ ∞

t

m1
∑

j=1

Qj(t)v(g(j(t)) .

Therefore, 0 ≤
∫ ∞

0 Qj(t)v(gj(t)) < +∞ for each j ∈ {0, . . . , m1}. We proceed as in
the proof of Theorem 2.4 to show that limt→∞ v(t) = 0.

Case 2: z(i)(t) > 0 for all i ∈ {0, . . . , n − 1}. Note that z(t) is positive and
increasing. By repeated integration of z(n−1), we obtain a positive constant M such
that z(t) ≥ Mtn−3 for t sufficiently large. Since z(t) is increasing and v(r(t)) ≤
z(r(t)) ≤ z(t), by (2.13), (1− p̂)z(t) ≤ v(t). Therefore, (1− p̂)Mtn−3 < v(t), which
completes the proof. �

Now, we allow the coefficient p1 to be negative in the equation

∂

∂t

(

b(t)
∂n−1

∂tn−1

(

u(x, t) + p1(t)u(x, r1(t))
))

=

m
∑

j=1

aj(t)∆u(x, hij(t)) −

m1
∑

j=1

qj(x, t)u(x, gj(t)),
(3.6)
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Theorem 3.2. Assume (H1) holds; b(t) is bounded; there is constant p̄ such that
p̄ < p1(t) ≤ 0; and

∫ ∞

0

m1
∑

j=1

Qj(t) dt = ∞ .

Then every solution of (3.6) is oscillatory, or its “average” v(t) converges to zero,
or v(t) approaches infinity at least at the rate of tn−3 (as t → ∞).

Proof. Assuming that u(x, t) is an eventually positive solution of (3.6), we show
that the “average” function approaches zero, or the “average” is bounded below by
a constant times tn−3. By (H1) there exists a time t0 such that u(x, t), u(x, r(t, ξ)),
u(x, hj(t)), and u(x, gi(t)) are positive for all t ≥ t0 and all j, ξ. Then we define z by

(2.3). By (3.5) b(t)z(n−1)(t) is decreasing; thus b(t)z(n−1)(t) is eventually positive
or eventually negative. Using that b(t) > 0, we consider four possible cases.

Case 1.1: z(n−1)(t) > 0 and z(i)(t) < 0 for some i ∈ {0, . . . , n − 2}. By
Lemma 2.1, z(n−2)(t) negative and increasing. So L := limt→∞ z(n−2)(t) exists
as finite number. Then by (3.5), L − z(n−2)(t) =

∫ ∞

t
z(n−1)(s) ds. Therefore,

limt→∞ z(n−1)(t) = 0 and because b(t) is bounded, limt→∞ b(t)z(n−1)(t) = 0. Then

0 − b(t)z(n−1)(t) =

∫ ∞

t

(

b(s)z(n−1)(s)
)′

< −

∫ ∞

t

m1
∑

j=1

Qj(t)v(g(j(t)) .

Therefore, 0 ≤
∫ ∞

0
Qj(t)v(gj(t)) < +∞ for each j ∈ {0, . . . , m1}. We proceed as in

the proof of Theorem 2.4 to show that limt→∞ v(t) = 0.
Case 1.2: z(n−1)(t) > 0 and z(i)(t) > 0 for all i ∈ {0, . . . , n − 2}. By repeated

integration of z(n−1), we obtain a positive constant M such that z(t) ≥ Mtn−3 for
t sufficiently large. Since p1(t) ≤ 0, z(t) < v(t). Therefore, Mtn−3 < v(t).

Case 2.1: z(n−1)(t) < 0 and z(i)(t) > 0 for some i ∈ {0, . . . , n− 2}. By Lemma
2.1, z(n−2)(t) is positive and decreasing, As in case 1.1.

0 − b(t)z(n−1)(t) =

∫ ∞

t

(

b(s)z(n−1)(s)
)′

< −

∫ ∞

t

m1
∑

j=1

Qj(t)v(g(j(t)) .

Note that the left-hand side is positive, while the right-hand side is negative. This
contradiction indicates that this case does not happen.

Case 2.2: z(n−1)(t) < 0 and z(i)(t) < 0 for all i ∈ {0, . . . , n − 2}. By repeated
integration of z(n−1), we obtain a negative constant M such that z(t) ≤ Mtn−3

for t sufficiently large. Since p̄ ≤ p1(t) ≤ 0, z(t) > p1(t)v(r(t)) ≥ p̄v(r(t)). Using
that r(t) ≤ t, we have M(r(t))n−3 ≥ Mtn−3 > p̄v(r(t)). Recall that p̄ and M are
negative, and that limt→∞ r(t) = ∞. Then v(t) ≥ M1t

n−3 for t large, where M1 is
a positive constant. This completes the proof. �
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4. Oscillation for a system of neutral PDEs

In this section, we study the system

∂n

∂tn

(

ui(x, t) +

∫ b

a

pi(t)ui(x, ri(t))
)

=

m2
∑

j=1

aij(t)∆ui(x, hij(t)) −

m
∑

j=1

∫ d

c

qij(x, t, ξ)uj(x, gj(t, ξ)) dµ(ξ),

(4.1)

for x ∈ Ω, t ≥ 0, i = 1, . . . , m. To the above system we attach one the following
two boundary conditions

ui(x, t) = 0 x ∈ ∂Ω, t ≥ 0, i = 1, . . . , m (4.2)

∂ui

∂ν
+ γi(x, t)ui(x, t) = 0 x ∈ ∂Ω, t ≥ 0, i = 1, . . . , m . (4.3)

A system of this type was studied by [9], when n is even and the delays are constants.
Their results correspond to Theorem 2.6 with β = 0, but their hypotheses need
additional assumptions on p, or q, or f to guarantee that [λ(t)V (n−1)(t)]′ < 0 on
page 110. A solution (u1, u2, . . . , um) of (4.1) is said to be oscillatory, if at least one
component is oscillatory. For eventually positive or eventually negative components,
we define δi = sign(ui); thus, |ui| = δiui. Our next step is to transform the coupled
system of PDEs (4.1) into an uncoupled system of differential inequalities. When
the boundary condition (4.2) is satisfied, we multiply each equation in (4.1) by the
first eigenvalue of the Laplacian and by δi. Then integrate over Ω and add over
i = 1, . . . , m. Let

vi(t) =

∫

Ω

φ1(x)δiui(x, t) dx , (4.4)

which is eventually positive when ui is non-oscillatory. Let

zi(t) = vi(t) +

∫ b

a

pi(t)vi(ri(t)) . (4.5)

By Green’s formula and (4.2), the first summation in the right-hand side of (4.1)
leads to a negative quantity. Therefore,

m
∑

i=1

z
(n)
i (t) < −

m
∑

i,j

∫

Ω

∫ b

a

qij(x, t, ξ)δiuj(x, gj(t, ξ)) dµ(ξ) .

Let q̄ij(t, ξ) = minx∈Ω qij(x, t, ξ) and q̂ij(t, ξ) = maxx∈Ω qij(x, t, ξ). Note that
∫

Ω

qjj(x, t, ξ)δjuj(x, gj) ≥ q̄jj(t, ξ)

∫

Ω

δjuj(x, gj) = q̄jj(t, ξ)vj(gj(t, ξ)) ,

where vj is defined by (4.4). Also note that δiuj ≤ δjuj and
∫

Ω

qij(x, t, ξ)δiuj(x, gj) ≤ q̂ij(t, ξ)

∫

Ω

δjuj(x, gj) = q̂ij(t, ξ)vj(gj(t, ξ)) .

The three inequalities above imply
m

∑

i=1

z
(n)
i (t) < −

m
∑

j=1

∫ d

c

[

q̄jj(t, ξ) −
m

∑

i6=j

q̂ij(t, ξ)
]

vj(gj(t, ξ)) dµ(ξ) . (4.6)
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With the notation in (H2) below, provided that zi(t) ≥ 0, we obtain the uncoupled
system of inequalities

z
(n)
i (t) < −

∫ d

c

Qi(t, ξ)vi(gi(t, ξ)) dµ(ξ),

z
(n)
i (t) < −

m1
∑

k=1

Qik(t)vi(gik(t)) (for the summation case)

(4.7)

where i = 1, . . . , m. The hypotheses in (H1) are modified as follows

(H2) 0 ≤ aij(t) with 0 <
∑m2

j=1 aij(t) for t ≥ 0, 1 ≤ i ≤ m.

There exist continuous functions ĝi(t) such that ĝi(t) ≤ gi(t, ξ) and for all
t, ξ, i (in the summation case: ĝi(t) ≤ gik(t) for all k).
hij(t), ĝi(t), ri(t, ξ) approach +∞ as t → ∞, for all ξ ∈ [a, b], j ∈ {1, . . .m2},
i ∈ {1, . . .m};
let q̄ij(t, ξ) = minx∈Ω qij(x, t, ξ) and q̂ij(t, ξ) = maxx∈Ω qij(x, t, ξ); assume
that

0 ≤ q̄jj(t, ξ) −
m

∑

i6=j

q̂ij(t, ξ) := Qj(t, ξ) . (4.8)

When p is non-negative, each component zi is positive, then the inequality (4.7)
holds. So that the proofs of Theorems 2.4, 2.5 and 2.6 apply to each component.
However, when p ≤ 0, the inequality (4.7) may not hold. So we cannot state analogs
for Theorems 2.7 and 2.8. We state only the analog to Theorem 2.4. The other
theorems require similar changes in notation. Consider the system

∂n

∂tn

(

ui(x, t) +

∫ b

a

pi(t)ui(x, ri(t))
)

=

m2
∑

j=1

aij(t)∆ui(x, hij(t)) −
m

∑

j=1

m1
∑

k=1

qijk(x, t)uj(x, gjk(t)) .

(4.9)

Theorem 4.1. Assume (H2) holds; 0 ≤ pi(t, ξ) for all i, t, ξ; and
∫ ∞

0

m1
∑

k=1

Qik(t) dt = ∞ .

Then each component of each solution of (4.9) is oscillatory, or its “average” vi(t)
converges to zero, as t → ∞.

Concluding Remarks. We studied oscillation only for a few range intervals of
the coefficient p(t), but there are many intervals to be considered. The case when
p changes sign is also an open question. Another open question is oscillation for
nonlinearities more general than those in Section 3.
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