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OSCILLATION CRITERIA FOR SECOND ORDER NONLINEAR

PERTURBED DIFFERENTIAL EQUATIONS

MOUSSADEK REMILI

Abstract. Sufficient conditions for the oscillation of the nonlinear second or-
der differential equation (a(t)x′)′ +Q(t, x′) = P (t, x, x′) are established where
the coefficients are continuous and a(t) is nonnegative.

1. INTRODUCTION

We are concerned here with the oscillatory behavior of solutions of the following
second order nonlinear differential equation:

(1.1) (a(t)x′)
′

+ Q(t, x) = P (t, x, x′),

where a : [T0,∞) → R, Q : [T0,∞) × R → R, and P : [T0,∞) × R × R → R are
continuous and a(t) > 0. Throughout the paper, we shall restrict our attention
only to the solutions of the differential equation (1.1) which exist on some ray of
the form [T0,∞).

In this paper we give more general integral criteria to the oscillation of (1.1),
which contain the results in [8] as particular cases.

A solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros, and
otherwise it is said to be nonoscillatory. If all solutions of (1.1) are oscillatory, (1.1)
is called oscillatory. The oscillatory behavior of solutions of second order ordinary
differential equation including the existence of oscillatory and nonoscillatory solu-
tions has been the subject of intensive investigations. This problem has received
the attention of many authors. Many criteria have been found which involve the
average behavior of the integral of the alternating coefficient. Among numerous
papers dealing with this subject we refer in particular to [1, 3, to 16 and 19, 20].

2. MAIN RESULTS

Assume that there exist continuous functions p, q : [T0,∞) → R and f : R → R,

such that

(2.1) xf(x) > 0 for x 6= 0,

(2.2) f ′(x) ≥ k > 0 for x 6= 0,
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(2.3)
Q(t, x)

f(x)
≥ q(t) and

P (t, x, x′)

f(x)
≤ p(t) for x 6= 0.

Theorem 1. Suppose that conditions (2.1),(2.2), and (2.3) hold and let ρ be a
positive continuously differentiable function on the interval [T,∞) such that ρ′ ≥ 0
on [T0,∞). Equation (1.1) is oscillatory if

(2.4) lim
t→∞

∫ t

T0

1

ρ(s)a(s)
ds = ∞,

(2.5)

∫

∞

T0

R(s)ds = ∞,

where

R(t) = ρ(t)[q(t) − p(t)] −
1

4k

ρ′2(t)

ρ(t)
a(t).

Proof. Let x be a nonoscillatory solution on an interval [T,∞), T ≥ T0 of the
differential equation (1.1). Without loss of generality, this solution can be supposed
such that x(t) 6= 0. We assume that x(t) is positive on [T,∞) (the case x(t) < 0
can be treated similarly and will be omitted).

Then

(2.6)

[

a(t)x′(t)

f [x(t)]

]

′

=
P [t, x′(t), x(t)]

f [x(t)]
−

Q[t, x(t)]

f [x(t)]
−

a(t)f ′(x(t)[x′(t)]2

f2[x(t)]
.

Multiplying (2.6) by ρ(t) and integrating from T to t , we obtain
(2.7)
ρ(t)a(t)x′(t)

f [x(t)]
≤ CT−

∫ t

T

ρ(s)[q(s)−p(s)]ds+

∫ t

T

ρ′(s)
a(s)x′(s)

f [x(s)]
ds−

∫ t

T

ρ(s)
a(s)f ′(x(s)[x′(s)2]

f2[x(s)]
ds.

Where CT = ρ(T )a(T )x′(T )
f [x(T )] . We use the following notation

ω(t) =
a(t)x′(t)

f [x(t)]
and W (t) = ω(t) −

ρ′(t)a(t)

2kρ(t)
.

Then we have by condition (2.2)

ρ(t)a(t)x′(t)

f [x(t)]
≤ CT −

∫ t

T

ρ(s)[q(s) − p(s)]ds +

∫ t

T

[

ρ′(s)ω(s) − k
ρ(s)

a(s)
ω2(s)

]

ds

≤ CT−

∫ t

T

ρ(s)[q(s)−p(s)]ds−

∫ t

T

kρ(s)

a(s)

[

W 2(s) −

(

ρ′(s)a(s)

2kρ(s)

)2
]

ds

(2.8) ≤ CT −

∫ t

T

R(s)ds,
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we see from (2.5) that

lim
t→∞

ρ(t)a(t)x′(t)

f [x(t)]
= −∞,

hence, there exist T1 ≥ T such that

x′(t) < 0 for t ≥ T1.

Condition (2.5) also implies
∫

∞

T ρ(s)[q(s)−p(s)]ds = ∞ and there exists T2 ≥ T1

such that
∫ T2

T1

ρ(s)[q(s) − p(s)]ds = 0 and
∫ t

T2

ρ(s)[q(s) − p(s)]ds ≥ 0 for t ≥ T2. Now

multiplying (1.1) by ρ(t) and integrating by parts we obtain

ρ(t)a(t)x′(t) ≤ CT2
+

∫ t

T2

ρ′(s)a(s)x′(s)ds −

∫ t

T2

f [x(s)]ρ(s)[q(s) − p(s)]ds

≤ CT2
− f [x(t)]

∫ t

T2

ρ(s)[q(s) − p(s)]ds

+

∫ t

T2

x′(s)f ′ [x(s)]

∫ s

T2

ρ(u)[q(u) − p(u)]duds

≤ CT2
for every t ≥ T1,

where CT2
= ρ(T2)a(T2)x

′(T2) < 0. Thus

x(t) ≤ CT2

∫ t

T2

1

ρ(s)a(s)
ds.

from (2.4) it follows that x(t) → −∞ as t → ∞ which is a contradiction.

Example 1. Consider the equation

[a(t)x′]
′

+

[

1

2
t−

3

2 (2 + cos(t)) + tex

]

x = xt−
1

2 sin(t) +
1

t3
x3 cos(x′)

x2 + 1
for t ≥

π

2
.

If we choose f(x) = x, a(t) = Log(t) and ρ(t) = t, then

Q(t, x)

f(x)
≥

1

2
t−

3

2 (2 + cos(t)) = q(t);
P (t, x, x′)

f(x)
≤ t−

1

2 sin(t) +
1

t3
= p(t).

For every t ≥ T0 = π
2 we obtain

∫ t

T0

R(s)ds =

∫ t

T0

s(
1

2
s−

3

2 (2 + cos(s)) − s−
1

2 sin(s) −
1

s3
) −

1

4

Log(s)

s
)ds

=

∫ t

T0

s(
1

2
s−

3

2 (2 + cos(s)) − s−
1

2 sin(s))ds −

∫ t

T0

1

s2
ds −

∫ t

T0

1

4

Log(s)

s
ds

=

∫ t

T0

d(s
1

2 (2 + cos(s)) +
1

t
−

2

π
−

1

8
Log2(t) +

1

8
Log2(

π

2
)

= t
1

2 (2 + cos t) − 2(
π

2
)

1

2 +
1

t
−

2

π
−

1

8
Log2(t) +

1

8
Log2(

π

2
)
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≥ t
1

2 − 2(
π

2
)

1

2 −
2

π
−

1

8
Log2(t).

Thus we have

∫

∞

T0

R(s) = ∞ and lim
t→∞

∫ t

T0

1

ρ(s)a(s)
ds =

∫

∞

T0

1

sLog(s)
ds = ∞,

i.e. (2.1),(2.2),(2.3),(2.4) and (2.5) are satisfied. Hence the differential equation
is oscillatory.

Theorem 2. If the conditions (2.1),(2.2),(2.3) ,(2.4) hold, and let ρ be a positive
continuously differentiable function on the interval [T,∞) such that ρ′ ≥ 0 on
[T0,∞) with

(2.9)

∫

∞

T0

ρ(s)[q(s) − p(s)]ds < ∞,

(2.10) lim inf
t→∞

[
∫ t

T

R(s)ds

]

≥ 0 for all large T,

(2.11) lim
t→∞

∫ t

T0

1

ρ(s)a(s)

∫

∞

s

R(u)duds = ∞,

and

(2.12)

∫

∞

ǫ

dy

f(y)
< ∞ and

∫

−∞

−ǫ

dy

f(y)
< ∞ for every ǫ > 0.

Then all solutions of (1.1) are oscillatory.

Remark 1. Condition (2.9) implies that

∫

∞

T

R(s)ds < ∞ and lim inf
t→∞

[
∫ t

T

R(s)ds

]

=

∫

∞

T

R(s)ds,

hence (2.10) takes the form

∫

∞

T

R(s)ds ≥ 0 for all large T,

Proof. Let x be a nonoscillatory solution on an interval [T ,∞) of the differential
equation (1.1). We suppose, as in Theorem 1, that x is positive on [T,∞). We
consider the following three cases for the behavior of x′(t).

Case 1: x′(t) > 0 for t ≥ T1 for some T1 ≥ T, then from (2.8) we have
∫ t

T1

R(s)ds ≤
ρ(T1)a(T1)x

′(T1)

f [x(T1)]
−

ρ(t)a(t)x′(t)

f [x(t)]
.

Hence, for all t ≥ T1
∫

∞

t

R(s)ds ≤ ρ(t)
a(t)x′(t)

f [x(t)]
.
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Using (2.12), we obtain
∫ t

T1

1

ρ(s)a(s)

∫

∞

s

R(u)duds ≤

∫ t

T1

x′(s)

f [x(s)]
ds

≤

∫

∞

x(T1)

dy

f(y)
< ∞.

This contradicts condition (2.11).
Case 2: x′(t) changes signs, then there exists a sequence ( αn) → ∞ in [T,∞)

such that x′(αn) < 0 . Choose N large enough so that
∫

∞

αN

R(s)ds ≥ 0

Then from (2.8) we have

ρ(t)a(t)x′(t)

f [x(t)]
≤ CαN

−

∫ t

αN

R(s)ds.

So

lim sup
t→∞

ρ(t)a(t)x′(t)

f [x(t)]
≤ CαN

+ lim sup
t→∞

[

−

∫ t

αN

R(s)ds

]

= CαN
− lim inf

t→∞

[
∫ t

αN

R(s)ds

]

< 0.

Which contradicts the fact that x′(t) oscillates.
Case 3: x′(t) < 0. for t ≥ T1 for some T1 ≥ T, Wong[16] showed that (2.10)

implies that for any t0 ≥ T0 there exists t1 ≥ t0 such that
∫

∞

t1
ρ(s)[q(s)−p(s)]ds ≥ 0

for all t ≥ t1. Choosing t1 ≥ T1 and then integrating (1.1) we have

ρ(t)a(t)x′(t) ≤ Ct1 +

∫ t

t1

ρ′(s)a(s)x′(s)ds −

∫ t

t1

f [x(s)]ρ(s)[q(s) − p(s)]ds

≤ Ct1 − f [x(t)]

∫ t

t1

ρ(s)[q(s) − p(s)]ds

+

∫ t

t1

x′(s)f ′ [x(s)]

∫ t

t1

ρ(u)[q(u) − p(u)]duds

≤ Ct1 for every t ≥ t1,

where Ct1 = ρ(t1)a(t1)x
′(t1) < 0.

Thus

x(t) ≤ Ct1

∫ t

t1

1

ρ(s)a(s)
ds,

from (2.4) it follows that x(t) → −∞ as t → ∞ which is a contradiction.
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Theorem 3. Suppose (2.1),(2.2),(2.3) hold and assume that there exists a constant
A > 0 such that

(2.13)
a(t)

ρ(t)
≤ A,

(2.14) lim
t→∞

[
∫ t

T

1

ρ(s)
ds

]−1 ∫ t

T

1

ρ(s)

∫ s

T

R(u)duds = ∞,

(2.15) lim
t→∞

∫ t

T

1

sρ(s)
ds = ∞.

Then (1) is oscillatory.

Proof. Let x be a nonoscillatory solution on an interval [T,∞), of the differential
equation (1). Without loss of generality, this solution can be supposed such that
x(t) > 0 for all t ≥ T (the case x(t) < 0 can be treated similarly and will be
omitted).

defining for every t ≥ T

g(t) =

{
∫ t

T

ds

ρ(s)

}−1

.

From (2.6) we have

(2.16) ρ(t)ω(t) +

∫ t

T

R(s)ds +

∫ t

T

kρ(s)

a(s)
W 2(s)ds ≤ CT .

Therefore, for every t ≥ T we have

(2.17) g(t)

∫ t

T

ω(s)ds + g(t)

∫ t

T

1

ρ(s)

∫ s

T

kρ(s)

a(s)
W 2(u)duds

≤ CT − g(t)

∫ t

T

1

ρ(s)

∫ s

T

R(u)duds.

Now, by condition (2.14)

lim
t→∞

{

g(t)

∫ t

T

ω(s)ds + g(t)

∫ t

T

1

ρ(s)

∫ s

T

kρ(s)

a(s)
W 2(u)duds

}

= −∞.

Hence, there exist T1 ≥ T such that

(2.18)

∫ t

T

ω(s)ds +

∫ t

T

1

ρ(s)

∫ s

T

kρ(s)

a(s)
W 2(u)duds < 0 for t ≥ T1,

Defining

H(t) =

∣

∣

∣

∣

∫ t

T

a(s)

kρ(s)
W (s)ds

∣

∣

∣

∣

Ψ(t) =

∫ t

T

H2(s)

sρ(s)
ds for all t ≥ T,
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we may use the Schwart inequality to obtain

H2(t) ≤

∫ t

T

[

a(s)

kρ(s)

]2

ds

∫ t

T

W 2(s)ds,

from (2.13) we have

H 2(t) ≤ Ct

∫ t

T

W 2(s)ds,

where C = A2

k2 .Thus, by condition (2.18) for t ≥ T1

−H(t)g(t) + g(t)
1

C

∫ t

T

H 2(s)

sρ(s)
ds ≤ g(t)

∫ t

T

a(s)

kρ(s)
W (s)ds + g(t)

∫ t

T

1

ρ(s)

∫ s

T

W 2(u)duds

≤ 0,

then

H2(t) ≥
1

C2

[
∫ t

T

H2(s)

sρ(s)
ds

]2

for all t ≥ T1,

and
1

C2

1

tρ(t)
≤

Ψ′(t)

Ψ2(t)
for all t ≥ T1.

So for any t ≥ T1 ≥ T

1

C2

∫ t

T1

1

sρ(s)
ds ≤

∫ t

T1

Ψ′(s)

Ψ2(s)
ds =

1

Ψ(T1)
−

1

Ψ(t)
≤

1

Ψ(T1)
< ∞.

This contradicts condition (2.15). The proof of the theorem is now complete.

Remark 2. Theorem 3 generalizes Theorem 4 in [8].

Theorem 4. Suppose (2.1), (2.2), (2.3), hold and assume that there exist a
constant λ > 0 such that

(2.19) lim
t→∞

inf

∫ t

T

R(s)ds > −∞ for all large T,

(2.20) lim sup
t→∞

1

t

∫ t

T

1

ρ(s)

∫ s

T

R(u)duds = ∞ for all large T,

(2.21)
a(t)

ρ(t)
≤ λt.

Then all solutions of (1) are oscillatory.

Proof. Let x be a nonoscillatory solution on an interval [T,∞), of the differential
equation (1). Without loss of generality, this solution can be supposed such that
x(t) > 0. for all t ≥ T. We consider the following three cases for the behavior of x′.

Case 1: x′ is oscillatory. Then there exists a sequence (tn) in [T,∞) with
lim

n→∞

tn = ∞ and such that x′(tn) = 0.(n ≥ 1). Thus (2.8) gives

∫ tn

T

kρ(s)

a(s)
W 2(s)ds ≤ CT −

∫ tn

T

R(s)ds,
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and hence, by taking into account condition (2.19), we conclude that
∫

∞

T

kρ(s)

a(s)
W 2(s)ds < ∞.

So, for some constant M we have

(2.22)

∫ t

T

kρ(s)

a(s)
W 2(s)ds ≤ M for every t ≥ T.

By the Schwarz’s inequality, we have
∣

∣

∣

∣

−

∫ t

T

W (s)ds

∣

∣

∣

∣

2

=

∫ t

T

kρ(s)

a(s)
W 2(s)ds

∫ t

T

a(s)

kρ(s)
ds ≤ M

∫ t

T

a(s)

kρ(s)
ds

≤
1

2k
Mλt2.

and hence for every t ≥ T

−

∫ t

T

W (s)ds = −

∫ t

T

ω(s) −
ρ′(s)a(s)

2kρ(s)
ds ≤

√

1

2k
Mλt.

Furthermore, (2.16) gives

1

ρ(t)

∫ t

T

R(s)ds ≤ CT − ω(t),

and therefore for all t ≥ T

1

t

∫ t

T

1

ρ(s)

∫ s

T

R(u)duds ≤
CT

t

∫ t

T

1

ρ(s)
ds +

√

1

2k
Mλ

≤
CT

t

(t − T )

ρ(T )
+

√

1

2k
Mλ,

and

lim sup
t→∞

1

t

∫ t

T

1

ρ(s)

∫ s

T

R(u)duds ≤
CT

ρ(T )
+

√

1

2k
Mλ < ∞.

This contradicts condition (2.20).
Case 2: x′ > 0 on [T1,∞), T1 ≥ T . Using (2.8) we get

∫ t

T

R(s)ds ≤ CT ,

and consequently

lim sup
t→∞

1

t

∫ t

T

1

ρ(s)

∫ s

T

R(u)duds ≤ 0.

Which again contradicts (2.20).
Case 3: x′(t) < 0. From (2.7), and (2.19) it follows that

(2.23)
ρ(t)a(t)x′(t)

f [x(t)]
≤ CT −

∫ t

T

ρ(s)[q(s)−p(s)]ds−

∫ t

T

ρ(s)
a(s)[x′(s)]2

(f [x(s)])2
f ′(x(s))ds.

We distinguish two mutually exclusive cases where −
∫

∞

T
ρ(s)a(s)[x′(s)]2

(f [x(s)])2 f ′(x(s))ds

is finite or infinite.
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i) If −
∫

∞

T ρ(s)a(s)[x′(s)]2

(f [x(s)])2 f ′(x(s))ds is finite. In this case, it follows that (2.22)

holds for t ≥ T. Once again, we can complete the proof by the procedure of the
proof of Case 1.

ii) If −
∫

∞

T
Rρ(s)a(s)[x′(s)]2

(f [x(s)])2 f ′(x(s))ds is infinite. By Condition (2.19), and from

(2.22) it follows that there exists a constant µ such that

−
ρ(t)a(t)x′(t)

f [x(t)]
≥ µ +

∫ t

T

[

x′(s)f ′(x(s))

f [x(s)]

]

ρ(s)a(s)x′(s)

f [x(s)]
ds for all t ≥ T.

Put

G(t) =
x′(t)f ′(x(t))

f [x(t)]
≤ 0.

Furthermore, we choose a T1 ≥ T so that

µ +

∫ T1

T

G(s)
ρ(s)a(s)x′(s)

f [x(s)]
ds = µ1 > 0,

and then for every t ≥ T1 we have

ρ(t)a(t)x′(t)

f [x(t)]
G(t)

[

µ +

∫ t

T

G(s)
ρ(s)a(s)x′(s)

f [x(s)]
ds

]−1

≥ −G(t),

and integrating from T1to t, we obtain

Log

[

µ +
∫ t

T G(s)ρ(s)a(s)x′(s)
f [x(s)] ds

]

µ1
≥ Log

ρ(t)f(x(T ))

ρ(T )f(x(t))
.

Thus

µ +

∫ t

T

G(s)

(

ρ(s)a(s)x′(s)

f [x(s)]

)

ds ≥ µ1
ρ(t)f(x(T ))

ρ(T )f(x(t))
.

The last inequality implies for t ≥ T1

x′(t) ≤ −
η

a(t)
,

where η = µ1+f(x(T ))
ρ(T ) > 0. And consequently for t ≥ T1

x(t) ≤ x(T1) − η

∫ t

T1

1

a(s)
ds ≤ −

η

b
(t − T1).

Therefore, we conclude that lim
t→∞

x(t) = −∞ . This contradicts the assumption

that x(t) > 0. This completes the proof of the theorem.

Example 2. Consider [a(t)x′]
′

+
[

1
2 t−

5

6 (2 + cos(t) + tx2
]

x = xt−
1

6 sin(t)+ 1
t3

x3 cos 2(x′)
x2+1

for t ≥ π
2 , with f(x) = x a(t) = t2/3, ρ(t) = t1/3 then
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Q(t, x)

f(x)
≥

1

2
t−

5

6 (2 + cos(t) = q(t);
P (t, x, x′)

f(x)
≤ t−

1

6 sin(t) +
1

t3
= p(t).

For every t ≥ T0 = π
2 , we obtain

∫ t

T0

R(s)ds =

∫ t

T0

s(
1

2
s−

5

6 (2 + cos(s) − s−
1

6 sin(s) −
1

s3
) −

1

36

1

s
)ds

=

∫ t

T0

s(
1

2
s−

3

2 (2 + cos(s) − s−
1

2 sin(s))ds −

∫ t

T0

1

s2
ds −

∫ t

T0

1

36

1

s
ds

=

∫ t

T0

d(s
1

2 (2 + cos(s)) +
1

t
−

2

π
−

1

36
Log(t) +

1

36
Log(

π

2
)

≥ t
1

2 − 2(
π

2
)

1

2 −
2

π
−

1

36
Log(t).

Thus we have

1

t

∫ t

T

1

ρ(s)

∫ s

T

R(u)duds ≥
1

t

∫ t

T

s
−1

3

[

s
1

2 − 2(
π

2
)

1

2 −
2

π
−

1

36
Log(s)

]

ds

≥
1

t

∫ t

T

s
−1

3

[

s
1

2 − 2(
π

2
)

1

2 −
2

π
−

1

36
s

1

3

]

ds

≥
6

7
t

1

6 −

[

2(
π

2
)

1

2 +
2

π

]

t
−1

3 −
1

36
−

6

7
(
π

2
)

7

6 ,

and consequently,

limt→∞ inf
∫ t

T
R(s)ds > −∞ ; lim sup

t→∞

1
t

∫ t

T
1

ρ(s)

∫ s

T
R(u)duds = ∞; and a(t)

ρ(t) ≤

t1/3 ≤ t.

This means that (2.19), (2.20) hold. Thus, from Theorem 4 it follows that, when
(2.21) is satisfied, our differential equation is oscillatory.
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