On existence and uniqueness of positive solutions for integral boundary boundary value problems *

Jinxiu Mao, Zengqin Zhao
School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China maojinxiu1982@163.com

Abstract

By applying the monotone iterative technique, we obtain the existence and uniqueness of $C^{1}[0,1]$ positive solutions in some set for singular boundary value problems of second order ordinary differential equations with integral boundary conditions.

2000 MSC: 34B10; 34B15.
Keywords: Boundary value problem; Positive solution.

1 Introduction and the main result

In this paper, we consider the existence of positive solutions for the following nonlinear singular boundary value problem:

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+k^{2} u=f(t, u), t \in(0,1), \tag{1.1}\\
u(0)=0, u(1)=\int_{0}^{1} u(t) d A(t)
\end{array}\right.
$$

where A is right continuous on $[0,1)$, left continuous at $t=1$, and nondecreasing on $[0,1)$, with $A(0)=0 . \int_{0}^{1} u(t) d A(t)$ denotes the Riemann-Stieltjes integral of u with respect to $A . k$ is a constant. Problems involving Riemann-Stieltjes integral boundary condition have been studied in $[3,7-9,13]$. These boundary conditions includes multipoint and integral boundary conditions, and sums of these, in a single framework. By changing variables $t \mapsto 1-t$, studying (1.1) also covers the case

$$
u(0)=\int_{0}^{1} u(t) d A(t), u(1)=0 .
$$

For a comprehensive study of the case when there is a Riemann-Stieltjes integral boundary condition at both ends, see [7].

[^0]In recent years, there are many papers investigating nonlocal boundary value problems of the second order ordinary differential equation $u^{\prime \prime}+f(t, u)=0$. For example, we refer the reader to $[1,3-5,7-9,11,12]$ for some work on problems with integral type boundary conditions. However, there are fewer papers investigating boundary value problems of the equation $-u^{\prime \prime}+k^{2} u=f(t, u)$. In [6], Du and Zhao investigated the following multi-point boundary value problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=f(t, u), t \in(0,1) \\
u(0)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\eta_{i}\right), u(1)=0
\end{array}\right.
$$

They assumed f is decreasing in u and get existence of $C[0,1]$ positive solutions ω with the property that $\omega(t) \geq m(1-t)$ for some $m>0$. In a recent paper [5], Webb and Zima studied the problem (1.1) (and others) when $d A$ is allowed to be a signed measure, and obtained existence of multiple positive solutions under suitable conditions on $f(t, u)$. Here we only study the positive measure case. We impose stronger restrictions on f. We suppose f is increasing in u, satisfies a strong sublinear property and may be singular at $t=0,1$. By applying the monotone iterative technique, we obtain the existence and uniqueness of $C^{1}[0,1]$ positive solutions in some set D. Also, we use iterative methods, we establish uniqueness, obtain error estimates and the convergence rate of $C^{1}[0,1]$ positive solutions with the property that there exists $M>m>0$ such that $m t \leq u(t) \leq M t$.

In this paper, we first introduce some preliminaries and lemmas in Section 2, and then we state our main results in Section 3.

2 Preliminaries and lemmas

We make the following assumptions:
$\left(H_{1}\right)$ There exists $k>0$ such that $\sinh (k)>\int_{0}^{1} \sinh (k(1-t)) d A(t)$;
$\left(H_{2}\right) f \in C((0,1) \times[0,+\infty),[0,+\infty)), f(t, u)$ is increasing in u and there exists a constant $b \in(0,1)$ such that

$$
\begin{equation*}
f(t, r u) \geq r^{b} f(t, u), \text { for all } r \in(0,1) \text { and }(t, u) \in(0,1) \times[0,+\infty) \tag{1.2}
\end{equation*}
$$

Remark 2.1. If $M>1$, condition (1.2) is equivalent to

$$
\begin{equation*}
f(t, M u) \leq M^{b} f(t, u), \quad \text { for all }(t, u) \in(0,1) \times[0,+\infty) \tag{1.3}
\end{equation*}
$$

Our discussion is in the space $E=C[0,1]$ of continuous functions endowed with the usual supremum norm. Let $P=\{u \in C[0,1]: u \geq 0\}$ be the standard cone of nonnegative continuous functions.

Definition 2.1. A function $u \in C[0,1] \bigcap C^{2}(0,1)$ is called a $C[0,1]$ solution if it satisfies (1.1). A $C[0,1]$ solution u is called a $C^{1}[0,1]$ solution if both $u^{\prime}(0+)$ and $u^{\prime}(1-)$ exist. A solution u is called a positive solution if $u(t)>0, t \in(0,1)$.

The Green's function for (1.1) is given in the following Lemma which was proved in [5] for the general case when $d A$ is a signed measure.

Lemma 2.1 [5] Suppose that $g \in C(0,1)$ and $\left(H_{1}\right)$ holds. Then the following linear boundary value problem

$$
\left\{\begin{array}{c}
-u^{\prime \prime}+k^{2} u=g(t), t \in(0,1) \tag{2.1}\\
u(0)=0, u(1)=\int_{0}^{1} u(t) d A(t)
\end{array}\right.
$$

has a unique positive solution u and u can be expressed in the form

$$
u(t)=\int_{0}^{1} F(t, s) g(s) d s
$$

where

$$
\begin{gather*}
F(t, s)=G(t, s)+\frac{\sinh (k t)}{\sinh (k)-\int_{0}^{1} \sinh (k \tau) d A(\tau)} \int_{0}^{1} G(\tau, s) d A(\tau), s, t \in[0,1] \tag{2.2}\\
G(t, s)= \begin{cases}\frac{\sinh (k s) \sinh (k(1-t))}{\sinh (k) k}, & 0 \leq s \leq t \\
\frac{\sinh (k t) \sinh (k(1-s))}{\sinh (k) k}, & t \leq s \leq 1\end{cases} \tag{2.3}
\end{gather*}
$$

Remark 2.2. We call $F(t, s)$ the Green's function of problem (1.1). Suppose that $\left(H_{1}\right),\left(H_{2}\right)$ hold. Then solutions of (1.1) are equivalent to continuous solutions of the integral equation

$$
u(t)=\int_{0}^{1} F(t, s) f(s, u(s)) d s
$$

where $F(t, s)$ is mentioned in (2.2).
Lemma 2.2 For any $t, s \in[0,1]$, there exist constants $c_{1}, c_{2}>0$ such that

$$
\begin{equation*}
c_{2} e(t) e(s) \leq F(t, s) \leq c_{1} e(s), s, t \in[0,1] \tag{2.4}
\end{equation*}
$$

where $e(s)=s(1-s)$.
Proof. Suppose that

$$
I(t)=\sinh (k) t-\sinh (k t), t \in[0,1]
$$

Then $I(0)=I(1)=0$ and $I^{\prime \prime}(t)=-k^{2} \sinh (k t) \leq 0, t \in[0,1]$. So $I(t) \geq 0$, i.e.

$$
\begin{equation*}
\sinh (k t) \leq \sinh (k) t, \quad t \in[0,1] . \tag{2.5}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
k t \leq \sinh (k t), \quad t \in[0,1] . \tag{2.6}
\end{equation*}
$$

From (2.3) we know

$$
\begin{equation*}
\frac{k}{\sinh (k)} G(t, t) G(s, s) \leq G(t, s) \leq G(t, t) . \tag{2.7}
\end{equation*}
$$

By using (2.3), (2.5) and (2.6) we obtain

$$
\begin{equation*}
G(t, t) \geq \frac{(k t)(k(1-t))}{\sinh (k) k}=\frac{k e(t)}{\sinh (k)} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
G(t, t) \leq \frac{(\sinh (k) t)(\sinh (k)(1-t))}{\sinh (k) k}=\frac{\sinh (k) e(t)}{k} . \tag{2.9}
\end{equation*}
$$

From (2.2), (2.7), (2.8) and (2.9) we have

$$
\begin{equation*}
F(t, s) \geq G(t, s) \geq \frac{k}{\sinh (k)} G(t, t) G(s, s) \geq\left(\frac{k}{\sinh (k)}\right)^{3} e(t) e(s) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{align*}
F(t, s) & \leq G(s, s)+G(s, s) \frac{\sinh (k)}{\sinh (k)-\int_{0}^{1} \sinh (k \tau) d A(\tau)} \int_{0}^{1} d A(\tau) \\
& \leq \frac{\sinh (k)}{k} e(s)\left[1+\frac{\sinh (k)}{\sinh (k)-\int_{0}^{1} \sinh (k \tau) d A(\tau)} \int_{0}^{1} d A(\tau)\right] . \tag{2.11}
\end{align*}
$$

Letting $c_{1}=\frac{\sinh (k)}{k}\left[1+\frac{\sinh (k)}{\sinh (k)-\int_{0}^{1} \sinh (k \tau) d A(\tau)} \int_{0}^{1} d A(\tau)\right]$ and $c_{2}=\left(\frac{k}{\sinh (k)}\right)^{3}$, we have $c_{2} e(t) e(s) \leq F(t, s) \leq c_{1} e(s)$.

Thus, (2.4) holds.

3 Main results

Now we state the main results as follows.
Theorem 3.1 Suppose that $\left(H_{1}\right),\left(H_{2}\right)$ hold. Let $D=\left\{u(t) \in C[0,1] \mid \exists L_{u} \geq l_{u}>0, l_{u} t \leq\right.$ $\left.u(t) \leq L_{u} t, t \in[0,1]\right\}$. If

$$
\begin{equation*}
0<\int_{0}^{1} f(t, t) d t<+\infty \tag{3.1}
\end{equation*}
$$

holds. Then problem (1.1) has a unique $C^{1}[0,1]$ positive solution u^{*} in D. Moreover, for any initial $x_{0} \in D$, the sequence of functions defined by

$$
x_{n}=\int_{0}^{1} F(t, s) f\left(s, x_{n-1}(s)\right) d s, n=1,2, \ldots
$$

converges uniformly to the unique solution $u^{*}(t)$ on $[0,1]$ as $n \rightarrow \infty$. Furthermore, we have the error estimation

$$
\begin{equation*}
\left\|x_{n}(t)-u^{*}(t)\right\| \leq 2\left(1-\left(t_{0}^{2}\right)^{b^{n}}\right)\left\|v_{0}\right\|, \tag{3.2}
\end{equation*}
$$

where t_{0}, v_{0} are defined below, and $F(t, s)$ is mentioned in (2.2).
Proof. From $u(t) \in D$ we know there exists $L_{u}>1>l_{u}>0$ such that

$$
l_{u} s \leq u(s) \leq L_{u} s, s \in[0,1] .
$$

This, together with $\left(H_{2}\right),(1.2)$ and (1.3), implies that

$$
\begin{equation*}
\left(l_{u}\right)^{b} f(s, s) \leq f(s, u(s)) \leq f\left(s, L_{u} s\right) \leq\left(L_{u}\right)^{b} f(s, s), \quad s \in(0,1) . \tag{3.3}
\end{equation*}
$$

Let us define an operator T by

$$
\begin{equation*}
T u=\int_{0}^{1} F(t, s) f(s, u(s)) d s, u \in D . \tag{3.4}
\end{equation*}
$$

From (3.1) and (3.3) and Lemma 2.2 we can have

$$
\int_{0}^{1} F(t, s) f(s, u(s)) d s \leq c_{1}\left(L_{u}\right)^{b} \int_{0}^{1} s(1-s) f(s, s) d s<+\infty .
$$

So the integral operator T makes sense. By (2.2), (2.3), (2.5), (2.6) and (2.7), we have that

$$
\begin{gather*}
F(t, s) \geq \sinh (k t) \frac{\int_{0}^{1} G(\tau, s) d A(\tau)}{\sinh (k)-\int_{0}^{1} \sinh (k \tau) d A(\tau)} \\
\geq k t \frac{\int_{0}^{1} G(\tau, s) d A(\tau)}{\sinh (k)-\int_{0}^{1} \sinh (k \tau) d A(\tau)}, \tag{3.5}\\
= \\
\left.\leq G(t, s)+\frac{\sinh (k t)\left(\frac{\sinh (k t)}{\sinh (k)-\int_{0}^{1} \sinh (k \tau) d A(\tau)} \int_{0}^{\sinh (k) k} G(\tau, s) d A(\tau)\right.}{\sinh (k)-\int_{0}^{1} \sinh (k \tau) d A(\tau)}\right) \tag{3.6}\\
\leq t \sinh (k)\left(\frac{1}{k}+\frac{\int_{0}^{1} G(\tau, s) d A(\tau)}{\sinh (k)-\int_{0}^{1} \sinh (k \tau) d A(\tau)}\right) .
\end{gather*}
$$

Thus

$$
\begin{gather*}
T u(t) \geq t \frac{k\left(l_{u}\right)^{b} \int_{0}^{1}\left(\int_{0}^{1} G(\tau, s) f(s, s) d s\right) d A(\tau)}{\sinh (k)-\int_{0}^{1} \sinh (k \tau) d A(\tau)}, t \in[0,1], \tag{3.7}\\
T u(t) \leq t\left(L_{u}\right)^{b} \sinh (k) \times \\
\int_{0}^{1}\left(\frac{1}{k}+\frac{\int_{0}^{1} G(\tau, s) d A(\tau)}{\sinh (k)-\int_{0}^{1} \sinh (k \tau) d A(\tau)}\right) f(s, s) d s, t \in[0,1] . \tag{3.8}
\end{gather*}
$$

Thus, from (3.1), (3.7) and (3.8), we obtain

$$
T: D \rightarrow D .
$$

It is known from Remark 2.2 that a fixed point of the operator T is a solution of BVP (1.1). From condition (1.2) we obtain

$$
\begin{equation*}
T(r u)=\int_{0}^{1} F(t, s) f(s, r u(s)) d s \geq r^{b} \int_{0}^{1} F(t, s) f(s, u(s)) d s=r^{b} T u, \tag{3.9}
\end{equation*}
$$

Obviously T is an increasing operator and from (1.3) we have

$$
\begin{equation*}
T(M u) \leq M^{b} T u \tag{3.10}
\end{equation*}
$$

Let $x_{0} \in D$ be given. Choose $t_{0} \in(0,1)$ such that

$$
t_{0}^{1-b} x_{0} \leq T x_{0} \leq\left(\frac{1}{t_{0}}\right)^{1-b} x_{0}
$$

Let us define $u_{0}=t_{0} x_{0}, v_{0}=\frac{1}{t_{0}} x_{0}, t_{0} \in(0,1)$. Then $u_{0} \leq v_{0}$ and from (3.9) and (3.10) we have

$$
\begin{equation*}
T u_{0} \geq t_{0}^{b} T x_{0} \geq t_{0} x_{0}=u_{0}, T v_{0} \leq\left(\frac{1}{t_{0}}\right)^{b} T x_{0} \leq \frac{1}{t_{0}} x_{0}=v_{0} \tag{3.11}
\end{equation*}
$$

Now we define

$$
u_{n}=T u_{n-1}, v_{n}=T v_{n-1},(n=1,2,3, \ldots) .
$$

It is easy to verify from (3.11) that

$$
\begin{equation*}
u_{0} \leq u_{1} \leq \ldots \leq u_{n} \leq \ldots \leq v_{n} \leq \ldots \leq v_{1} \leq v_{0} \tag{3.12}
\end{equation*}
$$

Clearly, $u_{0}=t_{0}^{2} v_{0}$. By induction, we see that

$$
\begin{equation*}
u_{n} \geq\left(t_{0}^{2}\right)^{b^{n}} v_{n},(n=0,1,2, \ldots) . \tag{3.13}
\end{equation*}
$$

Since P is a normal cone with normality constant 1 , it follows that

$$
\begin{equation*}
\left\|v_{n}-u_{n}\right\| \leq\left\|u_{n+p}-u_{n}\right\| \leq\left(1-\left(t_{0}^{2}\right)^{b^{n}}\right)\left\|v_{0}\right\| \tag{3.14}
\end{equation*}
$$

So $\left\{u_{n}\right\}$ is a cauchy sequence, therefore u_{n} converges to some $u^{*} \in D$. From this inequality it also follows that $v_{n} \rightarrow u^{*}$.

We see that u^{*} is a fixed point of T. Thus, $u^{*} \in D$ from $u_{0}, v_{0} \in D$ and $u^{*} \in\left[u_{0}, v_{0}\right]$. It follows from $u_{0} \leq x_{0} \leq v_{0}$ that $u_{n} \leq x_{n} \leq v_{n},(n=1,2,3, \ldots)$. So

$$
\begin{align*}
\left\|x_{n}-u^{*}\right\| & \leq\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-u^{*}\right\| \leq 2\left\|v_{n}-u_{n}\right\| \tag{3.15}\\
& \leq 2\left(1-\left(t_{0}^{2}\right)^{b^{n}}\right)\left\|v_{0}\right\|
\end{align*}
$$

Next we prove the uniqueness of fixed points of T. Let $\bar{x} \in D$ be any fixed points of T. From $u^{*}, \bar{x} \in D$ and the definition of D, we can put $t_{1}=\sup \left\{t>0 \mid \bar{x} \geq t u^{*}\right\}$. Evidently $0<t_{1}<\infty$. We now prove $t_{1} \geq 1$. In fact, if $0<t_{1}<1$, then

$$
\bar{x}=T \bar{x} \geq T\left(t_{1} u^{*}\right) \geq\left(t_{1}\right)^{b} T u^{*}=\left(t_{1}\right)^{b} u^{*}
$$

which contradicts the definition of t_{1} since $\left(t_{1}\right)^{b}>t_{1}$. Thus $t_{1} \geq 1$ and $\bar{x} \geq u^{*}$. In the same way, we can prove $\bar{x} \leq u^{*}$ and hence $\bar{x}=u^{*}$. The uniqueness of fixed points of A in D is proved. For any initial $z_{0} \in D, z_{n}=T^{n} z_{0} \rightarrow u^{*}$ with rate of convergence

$$
\begin{equation*}
\left\|z_{n}-u^{*}\right\|=o\left(1-\left(t_{0}^{2}\right)^{b^{n}}\right) \tag{3.16}
\end{equation*}
$$

from the results above. Choosing $z_{0}=x_{0}$, we obtain

$$
\begin{equation*}
\left\|x_{n}-u^{*}\right\|=o\left(1-\left(t_{0}^{2}\right)^{b^{n}}\right) \tag{3.17}
\end{equation*}
$$

This completes the proof of Theorem 3.1.
Remark Suppose that $\beta_{i}(t)(i=0,1,2, \ldots m)$ are nonnegative continuous functions on $(0,1)$, which may be unbounded at the end points of $(0,1)$. Ω is the set of functions $f(t, u)$ which satisfy the condition $\left(\mathrm{H}_{2}\right)$. Then we have the following conclusions:
(1) $\beta_{i}(t) \in \Omega, u^{b} \in \Omega$, where $0<b<1$;
(2) If $0<b_{i}<+\infty(i=1,2, \ldots m)$ and $b>\max _{1 \leq i \leq m}\left\{b_{i}\right\}$, then $\left[\beta_{0}(t)+\sum_{i=1}^{m} \beta_{i}(t) u^{b_{i}}\right]^{\frac{1}{b}} \in \Omega$;
(3) If $f(t, u) \in \Omega$, then $\beta_{i}(t) f(t, u) \in \Omega$;
(4) If $f_{i}(t, u) \in \Omega(i=1,2, \ldots m)$, then $\max _{1 \leq i \leq m}\left\{f_{i}(t, u)\right\} \in \Omega, \min _{1 \leq i \leq m}\left\{f_{i}(t, u)\right\} \in \Omega$.

The above four facts can be verified directly. This indicates that there are many kinds of functions which satisfy the condition $\left(\mathrm{H}_{2}\right)$.

EJQTDE, 2010 No. 16, p. 7

References

[1] M. Q. Feng, D. H. Ji, W. G. Ge, Positive solutions for a class of boundary value problem with integral boundary conditions in Banach spaces, J. Comput. Appl. Math. 222(2) (2008) 351-363.
[2] P. Kang, Z. L. Wei, Three positive solutions of singular nonlocal boundary value problems for systems of nonlinear second order ordinary differential equations, Nonlinear Anal. 70(1) (2009) 444-451.
[3] Z. L. Yang, Existence and uniqueness of positive solutions for an integral boundary value problem, Nonlinear Anal. 69(11) (2008) 3910-3918.
[4] Z. L. Yang, Positive solutions of a second order integral boundary value problem, J. Math. Anal. Appl. 321(2) (2006) 751-765.
[5] J. R. L. Webb, M. Zima, Multiple positive solutions of resonant and non-resonant nonlocal boundary value problems, Nonlinear Anal. 71 (2009) 1369-1378.
[6] X.S. Du, Z.Q. Zhao, Existence and uniqueness of positive solutions to a class of singular m-point boundary value problems, Appl. Math. Comput. 198(2) (2008) 487-493.
[7] J. R. L. Webb, Gennaro Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. London Math. Soc. (2) 74 (2006) 673-693.
[8] J. R. L. Webb, Gennaro Infante, Positive solutions of nonlocal boundary value problems involving integral conditions, NoDEA Nonlinear differ. equ. appl. 15 (2008) 45-67.
[9] G. L. Karakostas, P. Ch. Tsamatos, Existence of multiple positive solutions for a nonlocal boundary value problem, Topol. Methods Nonlinear Anal. 19 (2002) 109-121.
[10] Boucherif, Abdelkader, Second-order boundary value problems with integral boundary conditions, Nonlinear Anal. 70 (2009), no. 1, 364-371.
[11] Infante, Gennaro, Eigenvalues and positive solutions of ODEs involving integral boundary conditions, Discrete Contin. Dyn. Syst. 2005, suppl., 436-442.
[12] S. L. Xi, M. Jia, H. P. Ji, Positive solutions of boundary value problems for systems of second-order differential equations with integral boundary condition on the half-line, Electron. J. Qual. Theory Differ. Equ. 2009, No. 31, 1-13.
[13] Z. L. Yang, Existence and nonexistence results for positive solutions of an integral boundary value problem, Nonlinear Anal. 65 (2006), no. 8, 1489-1511.
(Received January 1, 2010)

[^0]: *Research supported by the National Natural Science Foundation of China (10871116) and the Doctoral Program Foundation of Education Ministry of China(200804460001).

