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Abstract

In this paper we study the generalized Fucik type eigenvalue for the boundary
value problem of one dimensional p−Laplace type differential equations

{

−(ϕ(u′))′ = ψ(u), −T < x < T ;
u(−T ) = 0, u(T ) = 0

(∗)

where ϕ(s) = αs
p−1
+ − βs

p−1
−

, ψ(s) = λs
p−1
+ − µs

p−1
−

, p > 1. We obtain a ex-
plicit characterization of Fucik spectrum (α, β, λ, µ), i.e., for which the (*) has a
nontrivial solution.

(1991) AMS Subject Classification: 35J65, 34B15, 49K20.

1 Introduction

In the study of nonhomogeneous semilinear boundary problem

{

−∆u = f(u) + g(x), in Ω
u = 0, on ∂Ω

it has been discovered in [3, 7] that the solvability of another boundary value problem

{

−∆u = λu+ − µu−, in Ω
u = 0, on ∂Ω

where u+ = max{u, 0}, u− = max{−u, 0} plays an important role. Since then there
are many works devoted to this subject [5, 13, 14, references therein], and the study
has also been extended to the p-Laplacian

{

−∆pu = λup−1
+ − µup−1

−
, in Ω

u = 0, on ∂Ω
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where ∆p =: div{|∇u|p−2∇u}, p > 1 [2, 4, 6, 10, 12] and even associated trigonometrical
p−sine and cosine functions have been studied [9]. In this paper, we are interested in
generalization of such Fucik spectrum and will consider one dimensional boundary
value problem

{

−(α(u′)p−1
+ − β(u′)p−1

−
))′ = λup−1

+ − µup−1
−

, −T < x < T
u(−T ) = 0, u(T ) = 0

(1.1)

where α, β, λ, µ > 0 are parameters, and call (α, β, λ, µ) the generalized Fucik spectrum,
if (1.1) has a non-trivial solution. The problem is motivated by the study of two-point
boundary value problem

{

−(ϕ(u′)))′ = ψ(x, u), −T < x < T
u(−T ) = 0, u(T ) = 0

(1.2)

and to our knowledge it is always assumed in the literature that ϕ is an odd function.
Thus a natural question arises: what would happen, if the function ϕ is merely a
homeomorphism, not necessarily odd function on R ? Here we shall first investigate
the autonomous eigenvalue type problem and in the forthcoming treat non-resonance
problem.

By a solution of (1.2) we mean that u(x) is of C1 such that ϕ(u′(x)) is differentiable
and the equation (1.2) is satisfied pointwise almost everywhere. The main results of
this paper are complete characterization of Fucik type eigenvalues, their associated
eigenfunctions and observations of changes of frequency, amplitude of solutions, when
they pass the mini- and maximum points respective change their signs (see the figures
below and (3.8) in details). Let πp = 2π

p sin(π/p)
, then we have

Theorem 1 (α, β, λ, µ) belongs to the generalized Fucik spectrum of (1.1), if and only
if for some integer k ≥ 0

1) ( p
√
α + p

√
β)((k + 1)

p
√
λ−1 + k p

√

µ−1)πp = 2T and corresponding eigenfunction u is
initially positive and has precisely 2k nodes.

2) ( p
√
α+ p

√
β)(k

p
√
λ−1 + (k + 1) p

√

µ−1)πp = 2T and the corresponding eigenfunction u
is initially negative and has also 2k nodes

3) (k+1)( p
√
α+ p

√
β)(

p
√
λ−1+ p

√

µ−1)πp = 2T and the corresponding eigenfunction u1, u2

has exact 2k + 1 nodes and u1 is initially positive and u2 is negative.
Moreover, the eigenfunctions are piecewise p−sine functions (see part 2 for definitions).
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2 Review on 1D p−Laplacian

We shall review some basic results about eigenvalues and associated eigenfunctions
for one dimensional p−Laplacian. Eigenfunctions are also called p−sine and -cosine
functions, sinp(x), cosp(x), which have been discussed in details in [9, 11], but for our
purpose we adopt the version in [1]. Let πp = 2π

p sin π
p

, the p−sine, p−cosine functions

sinp(x), cosp(x) are defined via

x =

∫ sinp(x)

0

dt
p
√

1 − tp
, 0 ≤ x ≤ πp/2 (2.1)

and extended to [πp/2, πp] by sinp(πp/2+x) = sinp(πp/2−x) and to [−πp, 0] by sinp(x) =
− sinp(−x) then finally extended to a 2πp periodic function on the whole real line; Then
p−cosine function is defined as cosp x = d

dx
(sinp x) and they have the properties:

sinp 0 = 0, sinp πp/2 = 1; cosp 0 = 1, cosp πp/2 = 0.

They share several remarkable relations as ordinary trigonometric functions, for in-
stance

| sinp x|p + | cosp x|p = 1.

But

d

x
(cosp x) = −| tanp x|p−2 sinp x 6= sinp x, where tanp x = sinp x/ cosp x.

The eigenvalues of one dimensional p-Laplace operator
{

−(|u′(x)|p−2u′(x))′ = λ|u(x)|p−2u(x), 0 ≤ x ≤ πp

u(0) = 0, u(πp) = 0
(2.2)

are 1p, 2p, 3p, · · · and the corresponding eigenfunctions are precisely

sinp(x), sinp(2x), sinp(3x), · · ·

and therefore we have another relation between p−cosine and sine functions

−(| cosp(kx)|p−2 cosp(kx))
′ = k| sinp(kx)|p−2 sinp(kx), k = 1, 2, · · ·
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Here we note that function sinp(x) is a solution to the following problem

{

−(|u′(x)|p−2u′(x))′ = |u(x)|p−2u(x), 0 < x < πp/2
u(0) = 0, u′(πp/2) = 0

(2.3)

and any solution is of form C sinp(x) for some constant C.
If the p−Laplacian is associated to another interval [a, b], different from [0, πp], then

by change of variables we see that eigenvalues and the associated eigenfunctions are

(
kπp

b− a
)p, sinp(k

x− a

b− a
πp), k = 1, 2, 3, · · · . (2.4)

3 Proof of Theorem 1

To understand the generalized Fucik spectrum of (1.1), we need to examine the follow-
ing Dirichlet-Neumann boundary value problem

{

−(α(u′)p−1
+ − β(u′)p−1

−
))′ = λup−1

+ − µup−1
−

, a < x < b
u(a) = 0, u′(b) = 0

(3.1)

We shall focus only on the constant sign solutions of (3.1) and note that there exist
essentially only ’two’ solutions, one positive and another negative, due to the positive
homogeneity of (3.1).

If u(x) is a positive solution of (3.1), then u must be increasing on [a, b), because
the equation (3.1) says that the function g(x) =: ϕ(u′(x)) is decreasing on (a, b] and
satisfies g(b) = 0, thus g(x) is positive for all x ∈ [a, b) and thus u′(x) has to be positive,
due to strict monotonicity of function ϕ(s) and ϕ(0) = 0. It follows that u satisfies

{

−(|u′(x)|p−2u′(x))′ = λ
α
|u(x)|p−2u(x), a < x < b

u(a) = 0, u′(b) = 0
(3.2)

It follows from (2.3) that u(x) = C sinp(
x−a

2
p

√

λ
α
) and α, λ satisfy πp

p
√

α/λ = b − a.

Likely if u is negative solution to (3.1), then

{ −(|u′(x)|p−2u′(x))′ = µ
β
|u(x)|p−2u(x), a < x < b

u(a) = 0, u′(b) = 0
(3.3)

u(x) = −C sinp(
x−a

2
p

√

µ
β
) and β, µ satisfy πp

p
√

β/µ = b− a.

In analogy we see that for the following boundary value problem

{

−(α(u′)p−1
+ − β(u′)p−1

−
))′ = λup−1

+ − µup−1
−

, a < x < b
u′(a) = 0, u(b) = 0

(3.4)

the positive and negative solutions are u(x) = D sinp(
b−x
b−a

πp

2
) respectively u(x) =

−D sinp(
b−x
b−a

πp

2
) and α, β, λ, µ satisfy πp

p
√

β/λ = b− a or πp
p
√

α/µ = b− a.
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It follows from the above analysis that if u is a positive solution to (1.1) and
u(x0) = maxu(x) := C, then x0 is determined by

p
√

α/λπp = x0 + T

and α, β, λ, µ satisfy
L+ := ( p

√

α/λ+ p
√

β/λ)πp = 2T.

Furthermore the solution u(x) is given by

u(x) =







C sinp(
x+T

2
p

√

λ
α
), −T ≤ x ≤ −T + πp

p
√

α
λ

C sinp(
T−x

2
p

√

λ
β
), T − πp

p

√

β
λ
≤ x ≤ T

(3.5)

and for the negative solution u of (1.1), then it holds

L− := ( p
√

α/µ+ p
√

β/µ)πp = 2T

u(x) =







−D sinp(
x+T

2
p

√

µ
β
), −T ≤ x ≤ −T + πp

p

√

β
µ

−D sinp(
T−x

2
p
√

µ
α
), T − πp

p

√

α
µ
≤ x ≤ T

(3.5′)

It is clear from (3.5) that u(x) changes its frequency, when it passes its maximum point
and is not symmetric anymore, which is in contrast to the symmetry principle of Gidas,
Ni and Nirenberg [8].

For an initially positive nodal solution u to (1.1) with only one node at T1, we get
that T1, α, β, λ, ν satisfy

( p
√

α/λ+ p
√

β/λ)πp = T1 + T.

( p
√
α + p

√

β)(
p
√
λ−1 + p

√

µ−1)πp = 2T (3.6)

If C = maxx∈[−T,T1] u(x),−D = maxx∈[T,T ] |u(x)|, then in view of identity

α

p′
(u′(x))p

+ +
β

p′
(u′(x))p

+ +
λ

p
(u(x))p

+ +
µ

p
(u′(x))p

−
= constant, ∀x ∈ [−T, T ] (3.7)

we deduce
λCp = µDp, C = p

√
µt, D =

p
√
λt, for some t > 0.

Using the positive homogeneity of (1.1) we derive that the solution u(x) is given in by

u(x) =































t p
√
µ sinp(

x+T
2

p

√

λ
α
), −T ≤ x ≤ −T + πp

p
√

α
λ

t p
√
µ sinp(

T1−x
2

p

√

λ
β
), T1 − πp

p

√

β
λ
≤ x ≤ T1

−t p
√
λ sinp(

x−T1

2
p

√

µ
β
), T1 ≤ x ≤ T1 + πp

p

√

β
µ

−t p
√
λ sinp(

T−x
2

p
√

µ
α
), T − πp

p

√

α
µ
≤ x ≤ T

(3.8)
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It follows from (3.8) that the differences between α and β are reflected by change of
amplitudes between positive and negative waves at the switch between plus and minus.

For the switch from negative wave to positive wave, it holds

u(x) =































− p
√
λ sinp(

x+T
2

p

√

µ
β
), −T ≤ x ≤ −T + πp

p

√

β
µ

− p
√
λ sinp(

T1−x
2

p
√

µ
α
), T1 − πp

p

√

α
µ
≤ x ≤ T1

p
√
µ sinp(

x−T1

2
p

√

λ
α
), T1 ≤ x ≤ T1 + πp

p
√

α
λ

p
√
µ sinp(

T1−x
2

p

√

λ
β
), T − πp

p

√

β
λ
≤ x ≤ T

(3.8′)

where T1 = −T +( p
√

α/µ+ p
√

β/µ)πp. In view of (3.8) and (3.8’) we see that u′(−T ) =
u′(T ) and therefore can extend u(x) to a 2T -periodic function on the whole real line
R.

For any given integer k ≥ 1. If u is a solution of (1.1) with (2k + 1) nodes, then it
must have equal number of positive and negative (k+1) waves.

Let T1 < T2 < · · · < T2k+1 be the nodal points of u, it follows from (3.7) that all
positive waves of u have same height and so are the same for negative waves. Moreover
similarly as deriving (3.6) we get

( p
√
α + p

√

β)(
p
√
λ−1 + p

√

µ−1)πp = Ti+2 − Ti, i = 1, · · · , 2k − 1.

Thereby α, β, λ, µ satisfy

(k + 1)( p
√
α + p

√

β)(
p
√
λ−1 + p

√

µ−1)πp = 2T (3.6′)

and the nodes are T1+2i = −T+(1+i)L++iL−, T2i = −T+i(L++L−), i = 0, 1, 2, · · · , k.
Furthermore let T0 = −T, T2k+2 = T then the initially positive solution u(x) on
[T2i, T2i+2], i = 0, 1, 2, · · ·k, is given by

u(x) =































t p
√
µ sinp(

x−Ti

2
p

√

λ
α
), Ti ≤ x ≤ Ti + πp

p
√

α
λ

t p
√
µ sinp(

Ti+1−x
2

p

√

λ
β
), Ti+1 − πp

p

√

β
λ
≤ x ≤ Ti+1

−t p
√
λ sinp(

x−T1

2
p

√

µ
β
), Ti+1 ≤ x ≤ Ti+1 + πp

p

√

β
µ

−t p
√
λ sinp(

Ti+2−x
2

p
√

µ
α
), Ti+2 − πp

p

√

α
µ
≤ x ≤ Ti+2

(3.9)

and the initially negative solution u by

u(x) =































−t p
√
λ sinp(

x−Ti

2
p

√

µ
β
), Ti ≤ x ≤ Ti + πp

p

√

β
µ

−t p
√
λ sinp(

Ti+1−x
2

p
√

µ
α
), Ti+1 − πp

p

√

α
µ
≤ x ≤ Ti+1

t p
√
µ sinp(

x−Ti+1

2
p

√

λ
α
), Ti+1 ≤ x ≤ Ti+1 + πp

p
√

α
λ

t p
√
µ sinp(

Ti+2−x
2

p

√

λ
β
), Ti+2 − πp

p

√

β
λ
≤ x ≤ Ti+2

(3.9′)

where T1+2i = −T + (1 + i)L− + iL+, T2i = −T + i(L+ + L−), i = 0, 1, 2, · · · , k.
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If u has 2k nodes, then there are two possibilities 1) (k + 1) positive waves and
k negative waves, 2) k positive waves and (k + 1) negative waves. In 1) the solution
should be initially positive and be initially negative in 2). It follows then

1)

( p
√
α + p

√

β)((k + 1)
p
√
λ−1 + k p

√

µ−1)πp = 2T (3.10)

and the solution u on [−T, T − L−] is (2T − L−)/k-periodic and is given by (3.9) on
[Ti, Ti+2], i = 0, 1, · · · , 2k − 2, and on [T2k, T ], u(x) is given by

u(x) =







t p
√
µ sinp(

x−T2k

2
p

√

λ
α
), T2k ≤ x ≤ T2k + πp

p
√

α
λ

t p
√
µ sinp(

T−x
2

p

√

λ
β
), T − πp

p

√

β
λ
≤ x ≤ T

(3.11)

2) For an initially negative solution with 2k nodes, then

( p
√
α + p

√

β)(k
p
√
λ−1 + (k + 1) p

√

µ−1)πp = 2T (3.12)

and on [Ti, Ti+2] the solution u is given by (3.9’) for i = 0, 1, · · · , 2k − 2, and on
[T2k, T ], u(x) is given by

u(x) =







−t p
√
λ sinp(

x−T2k

2
p

√

µ
β
), T2k ≤ x ≤ T2k + πp

p

√

β
µ

−t p
√
λ sinp(

T−x
2

p
√

µ
α
), T − πp

p

√

α
µ
≤ x ≤ T.

(3.11′)

So the proof is complete.

4 A final remark

In the study of nontrivial solutions to one dimensional nonlinear differential equation

−(ϕ(x, u′))′ = f(x, u) (4.1)

one usually adopt the notation of solution by (4.1) being satisfied pointwise, which in
turn ensures per definition only C1 smoothness of solution. Of course, one expects
higher order smoothness of the solutions. Here we shall examine this question for a
very special case, namely ϕ(x, s) = α(x)sp−1

+ − β(x)sq−1
−

, p, q > 1 e.g.,

−(α(x)(u′)p−1
+ − β(x)(u′)q−1

−
)′ = f(x, u) (4.2)

If we assume that the equation (4.2) is satisfied pointwise and moreover α, β > 0
are also C1, then any solution u is obviously C2 for any point x where u′(x) 6= 0. So in
order to get differentiability of u we need a closer examination at those points where
u′(x) = 0.

Let x0 be a critical point of u(x), u0 = u(x0), if p = q = 2, then we easily deduce
from the equation (4.2) that for small δ > 0

u′(x0 − δ) = f(x0, u0)/α(x0)(δ + o(δ)); −u′(x0 + δ) = f(x0, u0)/β(x0)(δ + o(δ))
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thereafter u′′(x) has a jump at x0 since α 6= β and thus u ∈ C1,1, but not C2.
In general, for any critical point x = x0 of u(x), we have the following asymptotic

as δ → 0
{

u′(x0 − δ) = C1δ
1/(p−1)(1 + o(1))

u′(x0 + δ) = −C2δ
1/(q−1)(1 + o(1))

where C1 = p−1
√

f(x0, u0)/α(x0), C2 = q−1
√

f(x0, u0)/β(x0). In view of the above
estimates, we deduce that

1. If 1 < p, q < 2 then u ∈ C2

2. If max{p, q} = 2 then u ∈ C1,1

3. If 2 < p, q then u ∈ C1,ε, ε = min{ 1
p−1

, 1
q−1

}.
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