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OSCILLATORY AND ASYMPTOTIC BEHAVIOUR OF A

NEUTRAL DIFFERENTIAL EQUATION WITH OSCILLATING

COEFFICIENTS

JULIO G. DIX, NIYATI MISRA, LAXMINARAYAN PADHY, RADHANATH RATH,

Abstract. In this paper, we obtain sufficient conditions so that every solution
of

(

y(t) −
n

∑

i=1

pi(t)y(δi(t))
)

′

+
m

∑

i=1

qi(t)y(σi(t)) = f(t)

oscillates or tends to zero as t → ∞. Here the coefficients pi(t), qi(t) and
the forcing term f(t) are allowed to oscillate; such oscillation condition in all
coefficients is very rare in the literature. Furthermore, this paper provides an
answer to the open problem 2.8.3 in [7, p. 57]. Suitable examples are included
to illustrate our results.

1. Introduction

During the previous two decades, oscillation of solutions to neutral delay differ-
ential equations has been studied extensively. In this article, we extend some results
from equation with fixed-sign coefficients to equations with oscillating coefficients.
In particular, we obtain sufficient conditions for every solution of the first-order
non-homogeneous nonlinear neutral delay differential equation

(

y(t) −
n

∑

i=1

pi(t)y(δi(t))
)′

+
m

∑

i=1

qi(t)gi

(

y(σi(t))) = f(t), (1.1)

to oscillate or to tend to zero as t tends to infinity. Here f, g, pi, qi, δi, σi are con-
tinuous, pi, δi are differentiable, and f, g, pi, qi can assume positive and negative
values.

The main motivation of this work is the open problem [7, Problem 2.8.3, p.57]:

Extend the following result to equations with oscillating coefficients.
Theorem 2.3.1 in [7]: Under the assumptions that q(t) ≥ 0 and

lim inf
t→∞

∫ t

t−τ

q(s)ds > e−1 (1.2)

every solution of

y′(t) + q(t)y(t − τ) = 0, t ≥ t0 (1.3)

oscillates.
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In most of the references it is assumed that the coefficients pi, qi are positive
[4, 8, 9, 10, 11, 12]. However, in [1, 6], pi oscillates, but the sign of qi remains
constant. In [3, Theorem 6(ii)], p oscillates, but the proof is wrong because the
conditions needed to apply [7, Lemma 2.2] are not met. In [9, Theorem 2.4], p is
periodic, oscillates and is restricted by inequalities similar to (H2).

It seems, that (1.1) is least studied when the functions qi oscillate. This is so
because the techniques used in the other cases fail. Ladde [5, Theorem 2.2.2] shows
that (1.3) has only oscillatory solutions when q(t) > 0 on a sequence of intervals of

length 2τ , whose end points approach +∞, and
∫ t

t−τ
q(s) ds > 1/e on the right half

of those intervals.
Our approach here is to separate the positive part and the negative part of the

function qi. Our assumptions are stated as follows:

(H1) δi(t) ≤ t, limt→∞ δi(t) = ∞, σi(t) ≤ t, limt→∞ σi(t) = ∞ for all i.
(H2) There exist constants t0 ≥ 0, ri ≤ 0 and Ri ≥ 0 such that

∑n

i=1(Ri−ri) < 1
and ri ≤ pi(t) ≤ Ri for t ≥ t0.

(H3) The functions gi are bounded.
(H4) ygi(y) > 0 for y 6= 0 and i = 1, . . .m.
(H5)

∫ ∞

0

∑m

i=1 q+
i (s) ds = ∞, where q+(t) = max{q(t), 0}.

(H6)
∫ ∞

0

∑m

i=1 q−i (s) ds < ∞, where q−(t) = max{−q(t), 0}.

(H7)
∫ ∞

0
|f(s)| ds < ∞.

A prototype of a function satisfying (H3)-(H4) is g(u) = ue−u2

which decreases for
some values of u; therefore the results in [1, 4, 8, 9, 10, 11, 12] can not be applied
here.

From the definitions of the functions q+(t) and q−(t), it follows that q+(t) ≥ 0,
q−(t) ≥ 0, and q(t) = q+(t) − q−(t). Then using this decomposition, (1.1) can be
rewritten as

(

y(t) −
n

∑

i=1

pi(t)y(δi(t))
)′

+
m

∑

i=1

q+
i (t)gi

(

y(σi(t))
)

−
m

∑

i=1

q−i (t)gi

(

y(σi(t))
)

= f(t) .

(1.4)
By a solution y of (1.1), we mean a real-valued function which is continuous

and differentiable on some interval [ty,∞), such that (1.1) is satisfied. As far as
existence and uniqueness of solutions we refer the reader to [7]. In this work we
assume the existence of solutions and study only their qualitative behaviour.

A solution of (1.1), is said to be oscillatory if it has arbitrarily large zeros.
Otherwise it is said to be non oscillatory. In the sequel, unless otherwise specified,
when we write a functional inequality, it will be assumed to hold for all sufficiently
large values of t.

2. Main results

Theorem 2.1. Under assumptions (H1)–(H7), every solution of (1.1) oscillates

or tends to zero as t → ∞.

Proof. We shall show that for every solutions which does not oscillate, approaches
zero as t → ∞.
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Case 1: There exits t0 such that y(t) > 0 for t ≥ t0. If necessary, increment the t0
here to exceed the one in (H2), and by (H1), to have

y(δi(t)) > 0, y(σi(t)) > 0, for t ≥ t0 . (2.1)

For simplicity of notation, define

z(t) = y(t) −
n

∑

i=1

pi(t)y(δi(t)) .

Using that
∫ ∞

0
q−i < ∞ and that gi is bounded, we define

w(t) = z(t) +

∫ ∞

t

m
∑

i=1

q−i (s)gi(y(σi(s))) ds −

∫ t

t0

f(s) ds .

Then using (1.4),

w′(t) = −

m
∑

i=1

q+
i gi(y(σi(t))) . (2.2)

Since y > 0, by (H4), w′(t) ≤ 0; so that w(t) is non-increasing. Then

w(t0) ≥ w(t) ≥ y(t) −

n
∑

i=1

pi(t)y(δi(t)) −

∫ t

t0

f(s) ds .

By (H7) the function
∫ t

0
f(s) ds is bounded, and by (2.1),

w(t0) + sup
t≥t0

∫ t

t0

f(s) ds ≥ y(t) −

n
∑

i=1

pi(t)y(δi(t)) ≥ y(t) −

n
∑

i=1

Riy(δi(t)) . (2.3)

Using a contradiction argument, we prove that y(t) is bounded above (y is con-
tinuous on [0, t0] and is bounded below by zero on [t0,∞)). Assuming that y is
unbounded, we define a sequence {tk}

∞
k=1 such that tk → ∞ and y(tk) = max{y(t) :

t0 ≤ t ≤ tk}. Then y(tk) → ∞ and by (H1), for each i, y(δi(tk)) → ∞ as k → ∞.
Since δi(t) ≤ t, from (2.3), it follows that for each tk,

w(t0) + sup
t≥t0

∫ t

t0

f(s) ds ≥ (1 −

n
∑

i=1

Ri)y(tk) .

By (H2), (1−
∑n

i=1 Ri) > 0; so that the right-hand side approaches +∞, as k → ∞.
This is a contradiction that proves y being bounded.

Since y and pi are bounded functions, so is z. Then by (H6), (H7), it follows
that w is bounded. Since w is bounded and non-increasing, it must converge as
t → ∞. Also by the definition of w(t), the function z(t) converges. Let

l := lim
t→∞

z(t) = lim
t→∞

(

y(t) −
n

∑

i=1

pi(t)y(δi(t))
)

. (2.4)

Now, using a contradiction argument, we show that lim inft→∞ y(t) = 0. Suppose
lim inft→∞ y(t) > 0. Then by (H1), lim inft→∞ y(σi(t)) > 0. From the definition
of lim inf, there exist constants y1 and t1 such that y(σi(t)) ≥ y1 > 0 for all
t ≥ t1, and all 1 ≤ i ≤ m. Let y2 be an upper bound for y. Because gi’s are
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continuous, by (H4), there exists a positive lower bound m1 for all gi’s on [y1, y2];
i.e., 0 < m1 ≤ gi(y(σi(s))) for all s ≥ t1, i = 1, . . . , m. Then integrating (2.2),

w(t1) − w(t) =

∫ t

t1

m
∑

i=1

q+
i (s)gi

(

y(σi(s))
)

ds ≥ m1

∫ t

t1

m
∑

i=1

q+
i (s) ds .

Since the left-hand side is a bounded function while, by (H5), the right-hand side
approaches +∞, we have a contradiction. Therefore, lim inft→∞ y(t) = 0.

Now we prove that lim supt→∞ y(t) = 0. Since y ≥ 0, from assumption (H2),
it follows that y(t) −

∑n

i=1 pi(t)y(δi(t)) ≥ y(t) −
∑n

i=1 Riy(δi(t)). Recall that for
bounded functions, lim sup{f(t)+g(t)} ≥ lim sup{f(t)}+lim inf{g(t)}. Taking the
lim sup in (2.4), we have

l ≥ lim sup
t→∞

{y(t) +

n
∑

i=1

−Riy(δi(t))}

≥ lim sup
t→∞

{y(t)} +

n
∑

i=1

lim inf
t→∞

{−Riy(t)}

= lim sup
t→∞

{y(t)} −

n
∑

i=1

Ri lim sup
t→∞

{y(t)}

= (1 −

n
∑

i=1

Ri) lim sup
t→∞

{y(t)} .

(2.5)

In the equality above, we use that −Ri ≤ 0.
Since y ≥ 0, from assumption (H2), it follows that y(t) −

∑n

i=1 pi(t)y(δi(t)) ≤
y(t) −

∑n

i=1 riy(δi(t)). Recall that for bounded functions, lim inf{f(t) + g(t)} ≤
lim inf{f(t)} + lim sup{g(t)}. Taking lim inf in (2.4), we have

l ≤ lim inf
t→∞

{y(t) +

n
∑

i=1

−riy(δi(t))}

≤ lim inf
t→∞

{y(t)} +

n
∑

i=1

lim sup
t→∞

{−riy(t)}

= 0 −
n

∑

i=1

ri lim sup
t→∞

{y(t)} .

In the the equality above, we use that −ri ≥ 0. From (2.5) and the above inequality,

(

1 −
n

∑

i=1

(Ri − ri)
)

lim sup
t→∞

{y(t)} ≤ 0 .

Since y ≥ 0, by (H2), it follows that lim supt→∞{y(t)} = 0. The proof of case 1 is
complete.
Case 2: There exists t0 such that y(t) < 0 for all t ≥ t0. If necessary increment
the t0 here to exceed the one in (H2), and by (H1) to have

y(δi(t)) < 0, y(σi(t)) < 0, for t ≥ t0 . (2.6)
EJQTDE, 2008 No. 19, p. 4



We define z(t) and w(t) as in case 1. Then w′(t) ≥ 0 and w(t) is non-decreasing;
so that

w(t0) ≤ w(t) ≤ y(t) −
n

∑

i=1

pi(t)y(δi(t)) −

∫ t

t0

f(s) ds .

By (H2),

w(t0) + inf
t≥t0

∫ t

t0

f(s) ds ≤ y(t) −

n
∑

i=1

pi(t)y(δi(t)) ≤ y(t) −

n
∑

i=1

Riy(δi(t)) . (2.7)

We claim that y(t) is bounded (y is continuous on [0, t0] and is bounded above
by zero on [t0,∞)). On the contrary suppose that y is unbounded, we define a
sequence {tk}

∞
k=1 such that tk → ∞ and y(tk) = min{y(t) : t0 ≤ t ≤ tk}. Then

y(tk) → −∞ and by (H1), for each i, y(δi(tk)) → −∞ as k → ∞. From (2.7), it
follows that for each tk,

w(t0) + sup
t≥t0

F (t) ≤ (1 −

n
∑

i=1

Ri)y(tk) .

By (H2), (1 −
∑n

i=1 Ri) > 0, so that the right-hand side approaches −∞. This
contradiction implies y being bounded.

Since y and pi are bounded functions, so is z. Then by (H6), (H7), it follows
that w is bounded. Since w is bounded and non-decreasing, it must converge as
t → ∞. Also by the definition of w(t), it follows that z(t) converges. Let

l := lim
t→∞

z(t) = lim
t→∞

(

y(t) −

n
∑

i=1

−pi(t)y(δi(t))
)

. (2.8)

Now, using a contradiction argument, we prove lim supt→∞ y(t) = 0. Suppose
lim supt→∞ y(t) < 0. Then by (H1), lim supt→∞ y(σi(t)) < 0. From the definition
of lim sup, there exist constants y2 and t1 such that y(σi(t)) ≤ y2 < 0 for all t ≥ t1,
and all 1 ≤ i ≤ n. Let y1 be a lower bound for y. Then there exists a negative
upper bound m2 for all gi’s on [y2, y1]; i.e., gi(y(σi(s))) ≤ m2 < 0 for all s ≥ t1,
i = 1, . . .m. Then integrating on (2.2),

w(t) − w(t1) = −

∫ t

t1

m
∑

i=1

q+
i (s)gi

(

y(σi(s))
)

ds ≥ −m2

∫ t

t1

m
∑

i=1

q+
i (s) ds .

The left-hand side is a bounded function and, by (H5), the right-hand side ap-
proaches +∞ as t → ∞. This contradiction implies lim supt→∞ y(t) = 0.

Now we prove that lim inft→∞ y(t) = 0. Since y ≤ 0, from assumption (H2),
it follows that y(t) −

∑n

i=1 pi(t)y(δi(t)) ≥ y(t) −
∑n

i=1 riy(δi(t)). Recall that for
bounded functions, lim sup{f(t)+g(t)} ≥ lim sup{f(t)}+lim inf{g(t)}. Taking the
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lim sup in (2.8), we have

l ≥ lim sup
t→∞

{y(t) +

n
∑

i=1

−riy(δi(t))}

≥ lim sup
t→∞

{y(t)} +

n
∑

i=1

lim inf
t→∞

{−riy(t)}

= 0 −
n

∑

i=1

ri lim inf
t→∞

{y(t)} .

(2.9)

In the equality above, we use that −ri ≥ 0.
Since y ≤ 0, from assumption (H2), it follows that y(t) −

∑n

i=1 pi(t)y(δi(t)) ≤
y(t) −

∑n

i=1 Riy(δi(t)). Recall that for bounded functions, lim inf{f(t) + g(t)} ≤
lim inf{f(t)} + lim sup{g(t)}. Taking lim inf in (2.4), we have

l ≤ lim inf
t→∞

{y(t) +

n
∑

i=1

−Riy(δi(t))}

≤ lim inf
t→∞

{y(t)} +

n
∑

i=1

lim sup
t→∞

{−Riy(t)}

= lim inf
t→∞

{y(t)} +

n
∑

i=1

−Ri lim inf
t→∞

{y(t)}

= (1 −

n
∑

i=1

Ri) lim inf
t→∞

{y(t)} .

For the equality above, we use that −Ri ≤ 0. From the (2.9) and the above
inequality,

0 ≤
(

1 −

n
∑

i=1

(Ri − ri)
)

lim inf
t→∞

{y(t).

Since y ≤ 0, by (H2), it follows that lim inft→∞{y(t)} = 0. The proof of case 2 is
complete.

In summary, every solution does not oscillate approaches zero. �

Note that in the above theorem, (H3) requires gi being bounded. However, the
open problem in [7] does not satisfy this condition. To address this shortcoming,
we introduce the following hypotheses, and state another theorem.

(H8) There exists a positive constant τ such that δi(t) ≤ t− τ and σi(t) ≤ t− τ
for all t ≥ 0 and all i’s.

(H9) There exist non-negative constants a, b such that

|gi(u)| ≤ a|u| + b for all u, 1 ≤ i ≤ m .

Theorem 2.2. Assume (H1)-(H2), (H4)-(H9) hold. Then every solution of (1.1)
oscillates or tends to zero as t → ∞.

Proof. As in Theorem 2.1, we prove that every solution which does not oscillate,
approaches zero as t → ∞.
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Case 1 There exists a t0 such that y(t) > 0 for t ≥ t0. If necessary increment t0
so that (2.1) is satisfied, and, by (H6),

α := (a + b)

∫ ∞

t0

m
∑

i=1

q−i (s) ds < 1 −

n
∑

i=1

Ri . (2.10)

Using that δi(t) and σi(t) are continuous and both tend to ∞ as t → ∞, we define
the values δ0 = inf{δi(t) : t ≥ t0, 1 ≤ i ≤ n} and σ0 = inf{σi(t) : t ≥ t0, 1 ≤ i ≤
m}. Select a constant M large enough such that

1 ≤ M ,

|y(t)| ≤ M for min{δ0, σ0} ≤ t ≤ t0 ,

α +

n
∑

i=1

Ri ≤
M

M + |y(t0)| + |
∑n

i=1 pi(t0)y(δi(t0))| +
∫ ∞

t0
|f |

.

(2.11)

Such M exists that

0 ≤ y(t) ≤ M + |y(t0)| + |

n
∑

i=1

pi(t0)y(δi(t0))| +

∫ ∞

t0

|f | := M2 for t ≤ t0 (2.12)

by (H2), (2.10) and 0 ≤ α +
∑n

i=1 Ri < 1. Then Now for t0 ≤ t ≤ t0 + τ , we
integrate (1.4), to obtain

y(t) =

n
∑

i=1

pi(t)y(δi(t)) + y(t0) −

n
∑

i=1

pi(t0)y(δi(t0))

−

∫ t

t0

m
∑

i=1

q+
i (s)gi(y(σi(s))) ds +

∫ t

t0

m
∑

i=1

q−i (s)gi(y(σi(s))) ds +

∫ t

t0

f(s) ds .

(2.13)
Because of δi(t) ≤ t− τ and σi(t) ≤ t− τ , we can use (2.12) to estimate each term
in the above expression. Using pi(t) ≤ Ri, we obtain

|

n
∑

i=1

pi(t)y(δi(t))| ≤

n
∑

i=1

RiM2 .

Since ygi(y) > 0, the fourth term on the right-hand side of (2.13) can be estimated
by zero. Using that y(σi(s)) ≤ M2 and M2 ≥ 1, by (H9), we have |g(y(σi(s)))| ≤
a|y(σi(s))| + b ≤ aM2 + b ≤ (a + b)M2. Then by (2.10),

∣

∣

∫ t

t0

m
∑

i=1

q−i (s)gi(y(σi(s))) ds
∣

∣ ≤ αM2 .

From the two inequalities above, (2.13), and (2.11) we obtain

0 ≤ y(t) ≤
(

α +

n
∑

i=1

Ri

)

M2 + |y(t0)| + |

n
∑

i=1

pi(t0)y(δi(t0))| +

∫ ∞

t0

|f | ≤ M2

for t0 ≤ t ≤ t0 + τ . Recursively, we show that 0 ≤ y(t) ≤ M2 on the intervals
[t0 + τ, t0 + 2τ ], [t0 + 2τ, t0 + 3τ ], . . . .

Next we define z(t) and w(t) as in Theorem 2.1. Then prove that limt→∞ y(t) = 0
by the same methods as in the proof of Theorem 2.1.
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Case2 There exists t0 such that y(t) < 0 for t ≥ t0. The proof is similar to the
proof of case 1; so we just sketch it. If necessary increment t0 so that (2.6) and
(2.10) are satisfied. Let M be defined as in (2.11). Then

0 ≤ −y(t) ≤ M + |y(t0)|+ |

n
∑

i=1

pi(t0)y(δi(t0))|+

∫ ∞

t0

|f | := M2 for t ≤ t0 . (2.14)

Now for t0 ≤ t ≤ t0 + τ , from (1.4), we have

−y(t) =

n
∑

i=1

pi(t)(−y(δi(t))) − y(t0) +

n
∑

i=1

pi(t0)y(δi(t0))

+

∫ t

t0

m
∑

i=1

q+
i (s)gi(y(σi(s))) ds −

∫ t

t0

m
∑

i=1

q−i (s)gi(y(σi(s))) ds −

∫ t

t0

f(s) ds .

Because ygi(y) > 0, the fourth term on the right-hand side can be estimated by
zero. Because δi(t) ≤ t − τ and σi(t) ≤ t − τ , we can use (2.14) to obtain

0 ≤ −y(t) ≤ (α +

n
∑

i=1

Ri)M2 + |y(t0)| + |

n
∑

i=1

pi(t0)y(δi(t0))| +

∫ ∞

t0

|f | ≤ M2,

for t0 ≤ t ≤ t0 + τ . Recursively, we show that 0 ≤ −y(t) ≤ M2 on the intervals
[t0 + τ, t0 + 2τ ], [t0 + 2τ, t0 + 3τ ], . . . . For the rest of the proof, we proceed as in
Theorem 2.1. �

The results in Theorems 2.1 and 2.2 hold for bounded solutions, as follows.

Theorem 2.3. Under assumptions (H1)-(H2), (H4)–(H7), every bounded solution

of (1.1) oscillates or tends to zero as t → ∞.

Regarding the open problem in [7], we have the following result.

Corollary 2.4. Assume that
∫ ∞

0

q+(s) ds = ∞, and

∫ ∞

0

q−(s) ds < ∞ .

Then every solution of (1.3) oscillates or tends to zero as t → ∞.

Proof. The delay equation (1.3) is a particular case of (1.1) where n = m = 1,
p1(t) = 0, q1(t) = q(t), g1(u) = u, σ1(t) = t − τ , and f(t) = 0. Condition (H3) is
not satisfied, but (H9) is satisfied with a = 1, b = 0. Since (H1)-(H2), (H4)-(H9)
are satisfied, we apply Theorem 2.2 and obtain the desired result. �

Remark 2.5. Condition (1.2) implies (H5). In fact, from the definition of lim inf,
there exists t0 such that for t ≥ t0,

∫ t

t−τ

q+(s) ds ≥

∫ t

t−τ

q(s) ds ≥
1

2e
.

Partitioning the interval of integration [t0,∞) in intervals of length τ , we have
∫ ∞

t0

q+(s) ds =

∫ t0+τ

t0

q+(s) ds +

∫ t0+2τ

t0+τ

q+(s) ds + · · · ≥

∞
∑

i=1

1

2e
= ∞

which implies (H5). Also note that (1.2) does not imply (H6).
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Example. To present an equation where Theorem 2.2 applies, we define

q(t) =
(

sin(t)
)+

−
1

t2 + 1

(

sin(t)
)−

.

Then q+(t) =
(

sin(t)
)+

and
∫ ∞

0
q+ = ∞; so (H5) is satisfied. Also 0 ≤ q−(t) =

1
t2+1

(

sin(t)
)−

≤ 1
t2+1

and
∫ ∞

0
q− ≤ π/2; so (H6) is satisfied. Consider the delay

equation

y′(t) + q(t)y(t − 1) = e−t
(

q(t)e − 1
)

.

Since q is bounded, the right-hand side is integrable, in absolute value, and (H7) is
satisfied. In fact, (H1)-(H2), (H4)-(H9) are satisfied and the solution to the above
equation is y(t) = e−t which approaches zero as t → ∞.

Example. To emphasize the need for (H3), or for (H6), we present the delay
equation

y′(t) − cos(t)y(t − 2π) = 0 ,

where q(t) = − cos(t) which does not satisfy (H6), and g(y) = y which does not
satisfy (H3). Note that (H1), (H2), (H4), (H5), (H7)–(H9) hold, but we can not
apply Theorem 2.1 or Theorem 2.2. Also note that the solution is y(t) = exp sin(t)
which does not oscillate and does not tend to zero as t → ∞.
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