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Cezar AVRAMESCU

Abstract

A generalization of the Leray-Schauder principle for multivalued
mappings is given. Using this result, an existence theorem for an inte-
gral inclusion is obtained.

2000 Mathematics Subject Classification: 47H10, 47H04.
Key words and phrases: fixed points, multivalued mappings, inte-
gral inclusions.

1. Introduction

The Schauder Fixed Point Theorem is, undoubtedly, one of the most impor-
tant theorems of nonlinear analysis.

Theorem 1.1 (Schauder) Let M be a nonempty closed bounded convex sub-
set of a Banach space X. Suppose that F : M → M is a continuous operator
and F (M) is a relatively compact set in X. Then F admits fixed points.

By using this theorem one can prove the following result due to Leray-
Schauder (see [6], p. 245).

Theorem 1.2 (Leray-Schauder) Let X be a Banach space and F : X → X
an operator. Suppose that:

(i) F is a continuous operator which maps every bounded subset of X
into a relatively compact set;

(ii) (a priori estimate) there exists an r > 0 such that if x = λF (x) ,
with λ ∈ (0, 1) , then ‖x‖ ≤ r.

Then F has fixed points.

If we set

A := {x ∈ X, (∃) λ ∈ (0, 1) , x = λF (x)} ,
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then hypothesis (ii) can be written under an alternative form, i.e.
(ii)a either the set A is unbounded, or the equation x = λF (x) has

solutions for λ = 1.
Having this statement, the Leray-Schauder Theorem has been genera-

lized in the case of locally convex spaces by H. Schaefer (see [5]).
The Schauder’s Theorem has been extended in different ways and di-

rections. One of these directions is the one when instead of a mapping
one considers a multivalued mapping F . One of the most representative
theorems for this direction is the Bohnenblust-Karlin Theorem (see [6], p.
452).

Theorem 1.3 (Bohnenblust-Karlin) Let M be a closed and convex subset of
the Banach space X and F : M → P (M) a multivalued mapping. Suppose
that:

(i) the set F (M) is relatively compact;
(ii) the multivalued mapping F is upper semi-continuous on M ;
(iii) the set F (x) is nonempty closed and convex for all x ∈ M.
Then there is x ∈ M such that x ∈ F (x) .

In the present Note we shall give a generalization of Theorem 1.3 in the
sense of Theorem 1.2. Also we shall give an application in the case of an
integral inclusion.

2. Preliminaries

In what follows we shall enumerate some classical notions and results re-
garding the multivalued mappings. Although many of these are available in
a more general framework, we shall mention them only in the form we need
in the present Note.

Let (X, ‖·‖) be a Banach space and M ⊂ X; set

P (M) := {N, N ⊂ M, N 6= ∅} .

We call multivalued mapping (or multi-function) defined on M e-
very application F : M → P (X) ; denote

F (M) : =
⋃

x∈M

F (x) , F−1 (M) := {x ∈ M, F (x) ∩ M 6= ∅} ,

B (a, r) : = {x ∈ X, ‖x − a‖ < r} , B [a, r] := {x ∈ X, ‖x − a‖ ≤ r} .
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We call F : M → P (M) upper semi-continuous in x0 (in brief u.s.c.)
if for all U open subset of X, with F (x0) ⊂ U , there exists η > 0 such that
for all x ∈ B (x0, η) we have F (x) ⊂ U.

We call F u.s.c. on M if it is u.s.c. in each point of M . In particular,
F : M → P (X) is upper semicontinuous on M if and only if for each closed
subset N ⊂ X, F−1 (N) is closed in M.

Another important category of multivalued mappings is the closed mul-
tivalued mapping. We call the multivalued mapping F : M → P (X) closed

on M if for every x0 ∈ M and for every sequence (xn)n ⊂ M , with xn → x0

and for every sequence (yn)n ⊂ F (xn) , with yn → y0, one has y0 ∈ F (x0) .
If F is closed on M , then for every x ∈ M , F (x) is a closed subset of X.
If F is u.s.c. on M and F (x) is closed and bounded for all x ∈ M , then

F is closed on M. The converse is not true. But, if F : M → P (X) is closed
and F (M) is relatively compact, then F is u.s.c. on M.

We call F : X → P (X) compact if for every M bounded subset of X,
F (M) is relatively compact.

From the above definitions it follows that if F : X → P (X) is a compact
and closed operator, then F is u.s.c. on X. Indeed, for every x ∈ X, there
exists r > 0 such that x ∈ B [0, r] and, since F is closed on B [0, r] , it
follows that F is u.s.c. on B [0, r] . We remark that by the hypotheses made,
it follows that F (x) is compact for every x.

3. Main result

Consider the operator F : X → P (X), where (X, ‖·‖) is a Banach space.
Set

A = {x ∈ X, (∃)λ ∈ (0, 1) , x ∈ λF (x)}

and
Br = B [0, r] .

Theorem 3.1 Suppose that:
(a) for all x ∈ X, F (x) is a closed and convex set;
(b) F is u.s.c. on X;
(c) F : X → P (X) is a compact multivalued mapping.
Then either the set A is unbounded or there exists x ∈ X such that

x ∈ F (x) .
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Proof. Suppose that the set A is bounded. The set F (A) being relatively
compact, it will be also bounded; it follows that there exists r > 0 such that

F (A) ⊂ Br. (3.1)

Set

B := B2r, K := sup
y∈F (B2r)

{‖y‖} , k := max {K, 2r + 1} .

Define a multivalued mapping G : B → P (X) through

G (x) =

{

F (x) ∩ B, if F (x) ∩ B 6= ∅
2r
k

F (x) , if F (x) ∩ B = ∅
. (3.2)

We shall prove that G fulfills the hypotheses of Theorem 1.3.

Step 1. G (B) ⊂ B. In the first case of (3.2) , this inclusion is immediate.
In the second case of (3.2) , the same inclusion follows by the fact that for
every y ∈ F (x) one has 1

k
‖y‖ ≤ 1.

Step 2. G (x) is a convex set. This is an immediate consequence of the
fact that F (x) is convex.

Step 3. G is closed multivalued mapping on B. So, let x ∈ B and
(xn)n ⊂ B such that xn → x. Let yn ∈ G (xn) such that yn → y. We
consider two cases, namely there is

a subsequence (ynk
)nk

of (yn)n such that ‖ynk
‖ ≤ 2r (3.3)

and
a subsequence

(

ynp

)

np
of (yn)n such that

∥

∥ynp

∥

∥ > 2r. (3.4)

In the case (3.3) we have ynk
∈ F (xnk

)∩B = G (xnk
) and, consequently,

y ∈ F (x) ∩ B, since F is closed.
In the case (3.4) we have ynp ∈ 2r

k
F

(

xnp

)

, i.e. k
2r

ynp ∈ F
(

xnp

)

and
hence y ∈ 2r

k
F (x) = G (x) .

Step 4. G (x) is closed for all x ∈ B. This assertion follows from Step
3, by setting xn ≡ x.

Step 5. G (B) is relatively compact. This assertion is proved by using
the reason from Step 3 and hypothesis (c).
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The results contained in Steps 3 and 5 allow us to conclude that G is
u.s.c. on B.

By applying Theorem 1.3 to operator G, it follows that

(∃)x ∈ B, x ∈ G (x) . (3.5)

Two cases are possible. If F (x) ∩ B 6= ∅, then x ∈ F (x) and the proof
is complete.

The case F (x) ∩ B = ∅ is impossible. Indeed, in this case we have

(x ∈ G (x)) =⇒

(

x ∈
2r

k
F (x)

)

and so,

x =
2r

k
y, y ∈ F (x) , ‖y‖ > 2r. (3.6)

But, since 2r/k < 2r/ (2r + 1) < 1, it follows that x ∈ A, and so ‖y‖ ≤ r,
taking into account (3.1) , which contradicts (3.6) . The proof is complete.
2

4. An existence result for an integral inclusion

We start by recalling certain things related to the theory of multivalued
integrals. We shall refer only to the concrete case in which we shall work,
although the notions and the properties are available in a more general
framework.

Let Φ : J → P (IRn) be a multivalued mapping with the property that
Φ (t) is a closed set for every t, where J = [0, T ] .

We call Φ measurable if for every closed set M , Φ−1 (M) is measurable.
We call Φ integrable in Aumann’s sense if there exists an integral

selection for Φ, that is, if there exists ϕ ∈ L1 (J, IRn) with ϕ (t) ∈ Φ(t) for
a.e. t ∈ J ; we set

∫ t

0
Φ(s) ds :=

{
∫ t

0
ϕ (s) ds, ϕ ∈ L1, ϕ (t) ∈ Φ(t) , a.e. t ∈ J

}

. (4.1)

We call Φ integrably bounded if there exists α ∈ L1 (J, IR) , α (t) ≥ 0
a.e., such that ‖Φ(t)‖ ≤ α (t) a.e. on J, where

‖Φ(t)‖ = sup
ϕ(t)∈Φ(t)

{|ϕ (t)|} , (4.2)
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|·| being a norm in IRn.
A classical result states that for every measurable and bounded multi-

valued mapping Φ for which Φ (t) is a compact and convex set for a.e. t ∈ J,
the set appearing in (4.1) is nonempty.

Consider the integral inclusion

x (t) ∈ H (t) +

∫ t

0
K (t, s) · G (s, x (s)) ds, (4.3)

where H : J → P (IRn) , K : J × J → Mn (IR) , G : J × IRn → P (IRn) .
For x = (xi)i=1,n ∈ IRn, we set

|x| := max
1≤i≤n

{|xi|} ,

and for A = (aij)i,j∈1,n
∈ Mn (IR), we set

|A| := max
1≤i≤n







n
∑

j=1

|aij |







.

Admit the following hypotheses.
H1) H is l.s.c. on J (lower semi-continuous), i.e. H−1 (U) is open for all

open sets U ;
H2) K : J × J → Mn (IR) is a continuous mapping;
G1) G (t, x) is compact and convex for all (t, x) , and G (t, 0) = 0;
G2) G (·, x) is measurable for every x ∈ IRn;
G3) G (t, ·) is u.s.c. for a.e. t ∈ J ;
G4)

‖G (t1, x) − G (t2, x)‖ ≤ |α (t1) − α (t2)| · β (|x|) , ∀t1, t2 ∈ J, ∀x ∈ IRn,

where α ∈ L1 (J, IR+) , β ∈ C (IR+, IR+), α (0) = 0, β (t) increasing,

‖G (t, x)‖ := sup {|g (t, x)| , g (t, x) ∈ G (t, x)} .

The following result holds.

Theorem 4.1 Assume that hypotheses H1)−H2) and G1)−G4) are fulfilled.
If

∫ ∞ dt

β (t)
= ∞, (4.4)

then the inclusion (4.3) admits solutions.
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Proof. We sketch the proof of Theorem 4.1. Denote

X := C (J, IRn) , Y := L1 (J, IRn) ,

with the usual norms

‖x‖ := sup
t∈J

{|x (t)|} , ‖y‖ :=

∫ T

0
|y (t)| dt.

By G4) it follows that

‖G (t, x)‖ ≤ α (t) · β (|x|) . (4.5)

Then, for every x ∈ X we have G (t, x (t)) is measurable and

‖G (t, x (t))‖ ≤ mx · α (t) ,

where mx = β (‖x‖) . Therefore, G (t, x (t)) is measurable and integrably
bounded, and consequently the set

SG (x) := {g ∈ Y, g (t) ∈ G (t, x (t)) a.e.} (4.6)

in nonempty, for all x ∈ X.
Define on X the operator

F (x) := h (·) +

∫ (·)

0
K (·, s)G (s, x (s)) ds, (4.7)

where h is a fixed continuous selection of H, whose the existence is assured
by the Michael’s Theorem (see, e.g., [6], p. 466).

Relation (4.6) defines a multivalued mapping SG from X to P (Y ) . One
remarks firstly that SG is closed. Indeed, let xn, x0 ∈ X, gn, g0 ∈ Y, xn → x0

in X, gn → g0 in Y. There exists a subsequence gnk
which converges a.e. on

J to g0. Let t ∈ J be fixed; one has

gnk
(t) ∈ G (t, xnk

(t)) . (4.8)

On the other hand, by hypotheses on G, it follows that for a.e. t, G (t, ·)
is closed. From (4.8) we deduce then

g0 (t) ∈ G (t, x0 (t)) ,

which proves that SG is closed.
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In addition, by hypothesis G4), taking into account the Riesz’s com-
pactity criterion in L1, it follows that for every Br ⊂ X, the set SG (Br)
is relatively compact in L1. Since SG is closed, it follows that SG (Br) is a
compact set. Let us check the hypotheses of Theorem 3.1 to F given by
(4.7) .

First, from the hypotheses and the properties of the integral, it is obvious
that F : X → P (X) .

Let us show that F is a closed multivalued operator. So, let xm, ym ∈ X,
such that ym ∈ F (xm) , m ≥ 1 and xm → x0 in X, ym → y0 in Y. We have

ym (t) = h (t) +

∫ t

0
K (t, s) gm (s) ds, (4.9)

gm ∈ SG (xm) . (4.10)

By the properties of SG established above, it follows that gm admits a
subsequence gmk

convergent in L1 to an g0 ∈ SG (x0) . But then, from (4.9) ,
taking into account the dominated convergence Theorem, ymk

(t) converges
for each t to h (t) +

∫ t
0 K (t, s) g0 (s) ds, which means that y0 ∈ F (x0) .

By using the Arzela’s Theorem, one can establish, through a classical
reason, that F (Br) is relatively compact in X. Hence, taking into account
that F is also closed, we conclude that F is u.s.c. on X.

It remains to check that the set A is not unbounded. So, let (x, λ) ∈
X × (0, 1), such that

x ∈ λF (x) .

Therefore,

x (t) = λh (t) + λ

∫ t

0
K (t, s) · gx (s) ds

and so,

|x (t)| ≤ c0 + c1

∫ t

0
α (s)β (|x (s)|) ds,

where c0, c1 are positive constants.
Set

w (t) := sup
0≤s≤t≤T

{|x (s)|} .

Obviously, w is increasing and

|x (t)| ≤ w (t) .
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Denote

u (t) = c0 + c1

∫ t

0
α (s)β (w (s)) ds.

We have
w (t) ≤ u (t) ,

and so,
|x (t)| ≤ u (t) .

But,
u̇ (t) = c1α (t)β (w (t)) a.e.

and so,
u̇ (t) ≤ c1α (t)β (u (t)) a.e.

hence,
∫ u(t)

c0

ds

β (s)
≤ c1

∫ t

0
α (s) ds, t ∈ J. (4.11)

If A would be unbounded, it would follow by (4.11) that the integral
∫ t
0 α (s) ds is unbounded, which contradicts the hypothesis α ∈ L1 (J, IR) .

All hypotheses of Theorem 3.1 being satisfied, the conclusion of Theorem
4.1 follows. 2
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