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1 Introduction

Let G ⊂ R2 be a bounded and simply connected domain with smooth boundary

∂G, and B1 = {x ∈ R2 or the complex plane C;x2
1 + x2

2 < 1}. Denote S1 =

{x ∈ R3;x2
1 + x2

2 = 1, x3 = 0} and S2 = {x ∈ R3;x2
1 + x2

2 + x2
3 = 1}. The vector

value function can be denoted as u = (u1, u2, u3) = (u′, u3). Let g = (g′, 0) be

a smooth map from ∂G into S1. Recall that the energy functional

Eε(u) =
1

2

∫

G

|∇u|2dx+
1

2ε2

∫

G

u2
3dx

with a small parameter ε > 0 was introduced in the study of some simplified

model of high-energy physics, which controls the statics of planner ferromagnets

and antiferromagnets (see [9] and [12]). The asymptotic behavior of minimizers

of Eε(u) had been studied by Fengbo Hang and Fanghua Lin in [7]. When the

term
u2

3

2ε2 replaced by (1−|u|2)2

4ε2 and S2 replaced by R2, the problem becomes the

simplified model of the Ginzburg-Landau theory for superconductors and was

well studied in many papers such as [1][2] and [13]. These works show that the

properties of harmonic map with S1-value can be studied via researching the

minimizers of the functional with some penalization terms. Indeed, Y.Chen and

M.Struwe used the penalty method to establish the global existence of partial

regular weak solutions of the harmonic map flow (see [4] and [6]). M.Misawa

studied the p-harmonic maps by using the same idea of the penalty method in
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[11]. Now, the functional

Eε(u,G) =
1

p

∫

G

|∇u|pdx+
1

2εp

∫

G

u2
3dx, p > 2,

which equipped with the penalization 1
2εp

∫

G
u2

3dx, will be considered in this

paper. From the direct method in the calculus of variations, it is easy to see

that the functional achieves its minimum in the function class W 1,p
g (G,S2).

Without loss of generality, we assume u3 ≥ 0, otherwise we may consider |u3|

in view of the expression of the functional. We will research the asymptotic

properties of minimizers of this p-energy functional on W 1,p
g (G,S2) as ε → 0,

and shall prove the limit of the minimizers is the p-harmonic map.

Theorem 1.1 Let uε be a minimizer of Eε(u,G) on W 1,p
g (G,S2). Assume

deg(g′, ∂G) = 0. Then

lim
ε→0

uε = (up, 0), in W 1,p(G,S2),

where up is the minimizer of
∫

G |∇u|pdx in W 1,p
g (G, ∂B1).

Remark. When p = 2, [7] shows that if deg(g′, ∂G) = 0, the minimizer of

Eε(u) in H1
g (G,S2) is just (u2, 0), where u2 is the energy minimizer, i.e., it is

the minimizer of
∫

G
|∇u|2dx in H1

g (G, ∂B1). When p > 2, there may be several

minimizers of Eε(u,G) in W 1,p
g (G,S2). The author proved that there exists a

minimizer, which is called the regularized minimizer, is just (up, 0), where up

is the minimizer of
∫

G
|∇u|pdx in W 1,p

g (G, ∂B1). For the other minimizers, we

only deduced the result as Theorem 1.1.

Comparing with the assumption of Theorem 1.1, we will consider the prob-

lem under some weaker conditions. Then we have

Theorem 1.2 Assume uε is a critical point of Eε(u,G) on W 1,p
g (G,S2). If

Eε(uε,K) ≤ C (1.1)

for some subdomain K ⊆ G. Then there exists a subsequence uεk
of uε such

that as k → ∞,

uεk
→ (up, 0), weakly in W 1,p(K,R3), (1.2)

where up is a critical point of
∫

K
|∇u|pdx in W 1,p(K, ∂B1), which is named

p-harmonic map on K. Moreover, for any ζ ∈ C∞
0 (K), when ε→ 0,

∫

K

|∇uεk
|pζdx →

∫

K

|∇up|
pζdx, (1.3)
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1

εp
k

∫

K

uεk3ζdx → 0. (1.4)

The convergent rate of |u′ε| → 1 and u3 → 0 will be concerned with as ε→ 0.

Theorem 1.3 Let uε be a minimizer of Eε(u,G) on W 1,p
g (G,S2). If (1.1)

holds, then there exists a positive constant C, such that as ε→ 0,

∫

K

|∇|u′ε||
pdx +

∫

K

|∇uε3|
pdx +

1

εp

∫

K

u2
ε3dx ≤ Cεβ ,

where β = 1 − 2
p when p ∈ (2, p0]; β = 2p

p2−2 when p > p0. Here p0 ∈ (4, 5) is a

constant satisfying p3 − 4p2 − 2p+ 4 = 0.

2 Proof of Theorem 1.1

In this section, we always assume deg(g′, ∂G) = 0. By the argument of the weak

low semi-continuity, it is easy to deduce the strong convergence in W 1,p sense

for some subsequence of the minimizer uε. To improve the conclusion of the

convergence for all uε, we need to research the limit function: p-harmonic map.

From deg(g′, ∂G) = 0 and the smoothness of ∂G and g, we see that there is

a smooth function φ0 : ∂G→ R such that

g = eiφ0 , on ∂G. (2.1)

Consider the Dirichlet problem

−div(|∇Φ|p−2∇Φ) = 0, in G, (2.2)

Φ|∂G = φ0. (2.3)

Proposition 2.1 There exists the unique weak solution Φ of (2.2) and (2.3) in

W 1,p(G,R). Namely, for any φ ∈ W 1,p
0 (G,R), there is the unique Φ satisfies

∫

G

|∇Φ|p−2∇Φ∇φdx = 0 (2.4)

Proof. By using the method in the calculus of variations, we can see the

existence for the weak solution of (2.2) and (2.3).

If both Φ1 and Φ2 are weak solutions of (2.2) and (2.3), then, by taking the

test function φ = Φ1 − Φ2 in (2.4), there holds

∫

G

(|∇Φ1|
p−2∇Φ1 − |∇Φ2|

p−2∇Φ2)∇(Φ1 − Φ2)dx = 0.
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In view of Lemma 1.2 in [5] we have

∫

G

|∇(Φ1 − Φ2)|
pdx ≤ 0.

Hence, Φ1−Φ2 = Const. onG. Noting the boundary condition, we see Φ1−Φ2 =

0 on G. Proposition is proved.

Recall that u ∈ W 1,p
g (G, ∂B1) is named p-harmonic map, if it is the critical

point of
∫

G
|∇u|pdx. Namely, it is the weak solution of

−div(|∇u|p−2∇u) = u|∇u|p (2.5)

on G, or for any φ ∈ C∞
0 (G,R2 or C), it satisfies

∫

G

|∇u|p−2∇u∇φdx =

∫

G

u|∇u|pφdx. (2.6)

Assume Φ is the unique weak solution of (2.2) and (2.3). Set

up = eiΦ, on G. (2.7)

Proposition 2.2 up defined in (2.7) is a p-harmonic map on G.

Proof. Obviously, up ∈ W 1,p
g (G, ∂B1) since Φ ∈ W 1,p

φ0
(G,R). We only need

to prove that up satisfies (2.6) for any φ ∈ C∞
0 (G,C). In fact,

∫

G
(|∇up|p−2∇up∇φ− upφ|∇up|p)dx

= i
∫

G |∇Φ|p−2∇Φ(eiΦ∇φ+ ieiΦ∇Φφ)dx = i
∫

G |∇Φ|p−2∇Φ∇(eiΦφ)dx

for any φ ∈ C∞
0 (G,C). Noting eiΦφ ∈ W 1,p

0 (G,C) and Φ is the weak solution

of (2.2) and (2.3), we obtain

∫

G

|∇up|
p−2∇up∇φdx−

∫

G

upφ|∇up|
pdx = 0

for any φ ∈ C∞
0 (G,C). Proposition is proved.

Since W 1,p
g (G, ∂B1) 6= ∅ when deg(g′, ∂G) = 0, we may consider the mini-

mization problem

Min{

∫

G

|∇u|pdx;u ∈ W 1,p
g (G, ∂B1)} (2.8)

The solution is called p-energy minimizer.

Proposition 2.3 The solution of (2.8) exists.
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Proof. The weakly low semi-continuity of
∫

G
|∇u|pdx is well-known. On the

other hand, if taking a minimizing sequence uk of
∫

G |∇u|pdx in W 1,p
g (G, ∂B1),

then there is a subsequence of uk, which is still denoted uk itself, such that as

k → ∞, uk converges to u0 weakly in W 1,p(G,C). Noting that W 1,p
g (G, ∂B1) is

the weakly closed subset of W 1,p(G,C) since it is the convex closed subset, we

see that u0 ∈W 1,p
g (G, ∂B1). Thus, if denote

α = Inf{

∫

G

|∇u|pdx;u ∈W 1,p
g (G, ∂B1)},

then

α ≤

∫

G

|∇u0|
pdx ≤ limk→∞

∫

G

|∇uk|
pdx ≤ α.

This means u0 is the solution of (2.8).

Obviously, the p-energy minimizer is the p-harmonic map.

Proposition 2.4 The p-harmonic map is unique in W 1,p
g (G, ∂B1).

Proof. It follows that up = eiΦ is a p-harmonic map from Proposition 2.2. If

u is also a p-harmonic map in W 1,p
g (G, ∂B1), then from deg(g′, ∂G) = 0 and

using the results in [3], we know that there is Φ0 ∈W 1,p(G,R) such that

u = eiΦ0 , on G,

Φ0 = φ0, on ∂G.

Substituting these into (2.6), we see that Φ0 is a weak solution of (2.2) and

(2.3). Proposition 2.1 leads to Φ0 = Φ, which implies u = up.

Now, we conclude that u0 in Proposition 2.3 is just the p-harmonic map up.

Furthermore, the p-energy minimizer is also unique in W 1,p
g (G, ∂B1).

Proof of Theorem 1.1. Noticing that uε is the minimizer, we have

Eε(uε, G) ≤ Eε((up, 0), G) ≤ C (2.9)

with C > 0 independent of ε. This means

∫

G

|∇uε|
pdx ≤ C, (2.10)

∫

G

u2
ε3dx ≤ Cεp. (2.11)
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Using (2.10), |uε| = 1 and the embedding theorem, we see that there exists a

subsequence uεk
of uε and u∗ ∈W 1,p(G,R3), such that as εk → 0,

uεk
→ u∗, weakly in W 1,p(G,S2), (2.12)

uεk
→ u∗, in Cα(G,S2), α ∈ (0, 1− 2/p). (2.13)

Obviously, (2.11) and (2.13) lead to u∗ ∈W 1,p
g (G,S1).

Applying (2.12) and the weak low semi-continuity of
∫

G
|∇u|pdx, we have

∫

G

|∇u∗|
pdx ≤ limεk→0

∫

G

|∇uεk
|pdx.

On the other hand, (2.9) implies

∫

G

|∇uεk
|pdx ≤

∫

G

|∇(up, 0)|pdx,

hence,
∫

G

|∇u′∗|
pdx ≤

∫

G

|∇up|
pdx.

This means that u′∗ is also a p-energy minimizer. Noting the uniqueness we see

u∗ = up. Thus

∫

G

|∇up|
pdx ≤ limεk→0

∫

G

|∇uεk
|pdx ≤ limεk→0

∫

G

|∇uεk
|pdx ≤

∫

G

|∇up|
pdx.

When εk → 0,
∫

G

|∇uεk
|p →

∫

G

|∇up|
p.

Combining this with (2.12) yields

lim
k→∞

∇uεk
= ∇(up, 0), in Lp(G,S2).

In addition, (2.13) implies that as ε→ 0,

uεk
→ (up, 0), in Lp(G,S2).

Then

lim
k→∞

uεk
= (up, 0), in W 1,p(G,S2).

Noticing the uniqueness of (up, 0), we see the convergence above also holds for

all uε.
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3 Proof of Theorem 1.2

In this section, we always assume that uε is the critical point of the functional,

and Eε(uε,K) ≤ C for some subdomain K ⊆ G, where C is independent of ε.

The assumption is weaker than that of Theorem 1.1. So, all the results in this

section will be derived in the weak sense.

The method in the calculus of variations shows that the minimizer uε ∈

W 1,p
g (G,S2) is a weak solution of

−div(|∇u|p−2∇u) = u|∇u|p +
1

εp
(uu2

3 − u3e3), on G, (3.1)

where e3 = (0, 0, 1). Namely, for any ψ ∈ W 1,p
0 (G,R3), uε satisfies

∫

G

|∇u|p−2∇u∇ψdx =

∫

G

uψ|∇u|pdx+
1

εp

∫

G

ψ(uu2
3 − u3e3)dx. (3.2)

Proof of (1.2). Eε(uε,K) ≤ C means

∫

K

|∇uε|
pdx ≤ C, (3.3)

∫

K

u2
ε3dx ≤ Cεp, (3.4)

where C is independent of ε. Combining the fact |uε| = 1 a.e. on G with (3.3)

we know that there exist up ∈W 1,p(K, ∂B1) and a subsequence uεk
of uε, such

that as εk → 0,

uεk
→ (up, 0), weakly in W 1,p(K), (3.5)

uεk
→ (up, 0), in Cα(K), (3.6)

for some α ∈ (0, 1− 2
p ). In the following we will prove that up is a weak solution

of (2.5).

Let B = B(x, 3R) ⊂⊂ K. φ ∈ C∞
0 (B(x, 3R); [0, 1]), φ = 1 on B(x,R), φ = 0

on B \ B(x, 2R) and |∇φ| ≤ C, where C is independent of ε. Denote u = uεk

in (3.2) and take ψ = (0, 0, φ). Thus

∫

B

|∇u|p−2∇u3∇φdx +
1

εp
k

∫

B

|u′|2φu3dx =

∫

B

u3φ|∇u|
pdx.

Applying (3.3) we can derive that

1

εp
k

∫

B

|u′|2φ|u3|dx ≤

∫

B

|∇u|pφdx +

∫

B

|∇u|p−1|∇φ|dx ≤ C. (3.7)

EJQTDE, 2004 No. 16, p. 7



From (3.6) it follows |u′| ≥ 1/2 when εk is sufficiently small. Noting φ = 1 on

B(x,R), we have
1

εp
k

∫

B(x,R)

|u3|dx ≤ C. (3.8)

Taking 1
k = εk, Fk = 1

εp

k

(uεk
u2

εk3 − uεk3e3) in Lemma 3.11 of [8], noting |Fk| =
1
εp

k

|u3||u′| and applying (3.5) and (3.8) we obtain that for any q ∈ (1, p), as

εk → 0, ∇uεk
→ ∇up, in Lq(B(x,R)). Since B(x,R) is an arbitrary disc in K,

we can see that as εk → 0, for any ξ ∈ C∞
0 (B,R3) there holds

∫

B

|∇uεk
|p−2∇uεk

∇ξdx →

∫

B

|∇up|
p−2∇up∇ξdx. (3.9)

Now, denote u′ = u′εk
= (u1, u2). Taking ψ = (u2, 0, 0)ζ and ψ = (0, u1, 0)ζ

in (3.2), respectively, where ζ ∈ C∞
0 (B,R), we have that for m, j ∈ {1, 2}, and

m 6= j,

1
εp

k

∫

B
u2

3umujζdx +
∫

B
umujζ|∇u|pdx

=
∫

B |∇u|p−2∇um∇ujζdx +
∫

B uj |∇u|p−2∇um∇ζdx.

One equation subtracts the other one, then

0 =

∫

B

|∇u|p−2(u ∧ ∇u)∇ζdx, (3.10)

where u ∧ ∇u = u1∇u2 − u2∇u1. On the other hand, since

∫

B u2|∇u|p−2∇u1∇ζdx−
∫

B up2|∇up|p−2∇up1∇ζdx

=
∫

B
(|∇u|p−2∇u1 − |∇up|p−2∇up1)up2∇ζdx

+
∫

B |∇u|p−2∇u1∇ζ(u2 − up2)dx,

we obtain that as εk → 0,
∫

B

u2|∇u|
p−2∇u1∇ζdx →

∫

B

up2|∇up|
p−2∇up1∇ζdx (3.11)

by using (3.3)(3.6) and (3.9). Similarly, we may also get that

lim
ε→0

∫

B

u1|∇u|
p−2∇u2∇ζdx =

∫

B

up1|∇up|
p−2∇up2∇ζdx. (3.12)

(3.12) subtracts (3.11), then

lim
ε→0

∫

B

|∇u|p−2(u ∧ ∇u)∇ζdx =

∫

B

|∇up|
p−2(up ∧ ∇up)∇ζdx.
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Combining this with (3.10), we have

∫

B

|∇up|
p−2(up ∧ ∇up)∇ζdx = 0. (3.13)

Let u∗ = up1 + iup2 : B → C. Thus

|∇u∗|
2 = |∇up|

2. (3.14)

It is easy to see that u∗∇u∗ = ∇(|u∗|2) + (u∗ ∧ ∇u∗)i = 0 + (u∗ ∧ ∇u∗)i since

|u∗|2 = |up1|2 + |up2|2 = 1. Substituting this into (3.13) yields

−i

∫

B

|∇u∗|
p−2u∗∇u∗∇ζdx = 0

for any ζ ∈ C∞
0 (B,R). Taking ζ = Re(u∗φj) and ζ = Im(u∗φj) (j = 1, 2),

respectively, where φ = (φ1, φ2) ∈ C∞
0 (B,R2), we can see that

∫

B

|∇u∗|
p−2u∗∇u∗∇Re(u∗φ)dx + i

∫

B

|∇u∗|
p−2u∗∇u∗∇Im(u∗φ)dx = 0.

Namely

0 =

∫

G

|∇u∗|
p−2u∗∇u∗∇(u∗φ)dx.

Noting u∗∇u∗ = −u∗∇u∗, we obtain

0 =
∫

B
|∇u∗|p−2∇u∗∇φdx−

∫

B
|∇u∗|p−2u∗∇u∗∇u∗φdx

=
∫

B |∇u∗|p−2∇u∗∇φdx−
∫

B |∇u∗|pu∗φdx := J

By using (3.14) and Re(J) = 0, Im(J) = 0, we have

∫

B

|∇up|
p−2∇up1∇φdx =

∫

B

|∇up|
pup1φdx (3.15)

and
∫

B

|∇up|
p−2∇up2∇φdx =

∫

B

|∇up|
pup2φdx.

Combining this with (3.15) yields that for any φ ∈ C∞
0 (B,R3),

∫

B

|∇up|
p−2∇up∇φdx =

∫

B

|∇up|
pupφdx.

It shows that up is a weak solution of (2.5). (1.2) is completed.
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Proof of (1.3). For simplification, denote εk = ε. From (3.3) and (3.6) it is

deduced that as ε→ 0,

|

∫

K

u2
3ζ|∇u|

pdx| ≤ sup
K

(1 − |u′|2) ·

∫

K

|∇u|pdx→ 0, (3.16)

|
∫

K u′upζ|∇u|pdx−
∫

K ζ|∇u|pdx| = |
∫

K(u′up − upup)ζ|∇u|pdx|

≤ supK |u′ − up| · |
∫

K
up|∇u|pdx| → 0,

(3.17)

and
∫

K

(u− (up, 0))ζ|∇u|pdx ≤ sup
K

|u− (up, 0)| · |

∫

K

up|∇u|
pdx| → 0. (3.18)

Similarly, (3.4) and (3.6) imply that as ε→ 0,

|
1

εp

∫

K

u2
3ζdx−

1

εp

∫

K

u2
3ζ(1−u

2
3)dx| ≤ sup

K
|1−|u′|2| ·

1

εp
|

∫

K

u2
3dx| → 0 (3.19)

and

|
1

εp

∫

K

upζu
′u2

3dx−
1

εp

∫

K

ζu2
3dx| ≤ sup

K
|u′ − up| ·

1

εp
|

∫

K

upu
2
3dx| → 0. (3.20)

Letting ε→ 0 in (3.2) we have

limε→0[
∫

K
uψ|∇u|pdx+ 1

εp

∫

K
ψ(uu2

3 − u3e3)dx]

=
∫

K
|∇up|p−2∇(up, 0)∇ψdx =

∫

G
(up, 0)ψ|∇up|pdx.

(3.21)

Take ψ = (0, 0, u3ζ) where ζ ∈ C∞
0 (K) we have

lim
ε→0

[

∫

K

u2
3ζ|∇u|

pdx +
1

εp

∫

K

u2
3ζ(u

2
3 − 1)dx] = 0.

Combining this with (3.16) we derive

lim
ε→0

1

εp

∫

K

u2
3ζ(u

2
3 − 1)dx = 0.

Substituting this into (3.19) yields

lim
ε→0

1

εp

∫

K

u2
3ζdx = 0. (3.22)

Hence, as ε→ 0,
1

εp
|

∫

K

uu2
3ζdx| ≤

1

εp

∫

K

u2
3ζdx → 0.
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Thus, for any ψ ∈ W 1,p
0 (K,R3), there holds

lim
ε→0

1

εp

∫

K

uu2
3ψdx = 0. (3.23)

In addition, substituting (3.22) into (3.20) leads to

lim
ε→0

1

εp

∫

K

upζu
′u2

3dx = 0. (3.24)

Take ψ = (upζ, 0) in (3.21) we have

lim
ε→0

[

∫

K

u′upζ|∇u|
pdx+

1

εp

∫

K

upζu
′u2

3dx] =

∫

K

|∇up|
pζdx,

which, together with (3.24), implies

lim
ε→0

∫

K

u′upζ|∇u|
pdx =

∫

K

|∇up|
pζdx.

Combining this with (3.17) we can see (1.3) at last.

Proof of (1.4). Obviously, (3.18) and (1.3) show that as ε→ 0,

|
∫

K
u|∇u|pψdx −

∫

K
(up, 0)|∇up|pψdx|

≤ |
∫

K(u− (up, 0))|∇u|pψdx| + |
∫

K(up, 0)(|∇u|p − |∇up|p)ψdx| → 0.

Substituting this and (3.23) into (3.21), we see that the left hand side of (3.21)

becomes
limε→0[

∫

K uψ|∇u|pdx+ 1
εp

∫

K ψ(uu2
3 − u3e3)dx]

=
∫

K
(up, 0)|∇up|pψdx− limε→0

1
εp

∫

K
ψu3e3dx.

Comparing this with the right hand side of (3.21), we have

lim
ε→0

1

εp

∫

K

ψu3e3dx = 0.

This is (1.4). Theorem 1.2 is proved.

4 A Preliminary Proposition

To present the convergent rate of |u′ε| → 1 and uε3 → 0 in W 1,p sense when

ε→ 0, we need the following

Proposition 4.1 Assume uε is a minimizer of Eε(u,G) on W . If Eε(uε,K) ≤

C for some domain K ⊆ G. Then there exists a positive constant C which is

independent of ε ∈ (0, 1), such that

1

p

∫

K

|∇uε|
pdx+

1

εp

∫

K

u2
ε3dx ≤ Cε2/p +

1

p

∫

K

|∇
u′ε
|u′ε|

|pdx. (4.1)
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Proof. Denote w =
u′

ε

|u′

ε|
. ChooseR > 0 sufficiently small such thatB(x, 3R) ⊂

K. It follows from (3.6) that

|u′ε| ≥ 1/2 (4.2)

on B(x, 3R) as ε sufficiently small. This and (3.3) imply

∫

B(x,3R)

|∇w|pdx ≤ 2p

∫

B(x,3R)

|u′ε|
p|∇w|pdx ≤ C

∫

B(x,3R)

|∇uε|
pdx ≤ C.

(4.3)

Applying (1.1) and the integral mean value theorem, we know that there is a

constant r ∈ (2R, 3R) such that

1

p

∫

∂B(x,r)

|∇uε|
pdx+

1

2εp

∫

∂B(x,r)

u2
ε3dx = C0(r)Eε(uε, B3R \B2R) ≤ C. (4.4)

Consider the functional

E(ρ,B) =
1

p

∫

B

(|∇ρ|2 + 1)p/2dx+
1

2εp

∫

B

(1 − ρ)2dx,

where B = B(x, r). It is easy to prove that the minimizer ρ1 of E(ρ,B) on

W 1,p
|u′

ε|
(B,R+ ∪ {0}) exists and solves

−div(v(p−2)/2∇ρ) =
1

εp
(1 − ρ) on B, (4.5)

ρ|∂B = |u′ε|, (4.6)

where v = |∇ρ|2 + 1. Since 1/2 < |u′ε| ≤ 1, it follows from the maximum

principle that on B,
1

2
< ρ1 ≤ 1. (4.7)

Clearly, (1 − |u′|)2 ≤ (1 − |u′|2)2 = u4
3 ≤ u2

3. Thus, by noting that ρ1 is a

minimizer, and applying (1.1) we see easily that

E(ρ1, B) ≤ E(|u′ε|, B) ≤ CEε(uε, B) ≤ C. (4.8)

Multiplying (4.5) by (ν · ∇ρ), where ρ denotes ρ1, and integrating over B,

we have

−
∫

∂B
v(p−2)/2(ν · ∇ρ)2dξ +

∫

B
v(n−2)/2∇ρ · ∇(ν · ∇ρ)dx

= 1
εp

∫

B(1 − ρ)(ν · ∇ρ)dx,
(4.9)

where ν denotes the unit vector on B, and it equals to the unit outside norm

vector on ∂B.
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Using (4.8) we obtain

|
∫

B v
(p−2)/2∇ρ · ∇(ν · ∇ρ)dx|

≤ C
∫

B
v(n−2)/2|∇ρ|2dx+ 1

2 |
∫

B
v(p−2)/2(ν · ∇v)dx|

≤ C + 1
p |

∫

B ν · ∇(vn/2)dx| ≤ C + 1
p

∫

B |div(vp/2ν) − vp/2divν|dx

≤ C + 1
p

∫

∂B
vp/2dξ.

Combining (4.6), (4.4) and (4.8) we also have

| 1
εp

∫

B(1 − ρ)(ν · ∇ρ)dx| ≤ 1
2εp |

∫

B(1 − ρ)2divνdx −
∫

∂B(1 − ρ)2dξ|

≤ 1
2εp

∫

B
(1 − ρ)2|divν|dx+ 1

2εp

∫

∂B
(1 − ρ)2dξ ≤ C.

Substituting these into (4.9) yields

|

∫

∂B

v(p−2)/2(ν · ∇ρ)2dξ| ≤ C +
1

p

∫

∂B

vp/2dξ. (4.10)

Applying (4.6), (4.4) and (4.10), we obtain for any δ ∈ (0, 1),

∫

∂B
vp/2dξ =

∫

∂B
v(p−2)/2[1 + (τ · ∇ρ)2 + (ν · ∇ρ)2]dξ

≤
∫

∂B v
(p−2)/2dξ +

∫

∂B v
(p−2)/2(ν · ∇ρ)2dξ

+(
∫

∂B v
p/2dξ)(p−2)/p(

∫

∂B(τ · ∇|u′ε|)
pdξ)2/p

≤ C(δ) + ( 1
p + 2δ)

∫

∂B
vp/2dξ,

where τ denotes the unit tangent vector on ∂B. Hence it follows by choosing

δ > 0 so small that
∫

∂B

vp/2dξ ≤ C. (4.11)

Now we multiply both sides of (4.5) by (1 − ρ) and integrate over B. Then

∫

B

v(p−2)/2|∇ρ|2dx+
1

εp

∫

B

(1 − ρ)2dx = −

∫

∂B

v(p−2)/2(ν · ∇ρ)(1 − ρ)dξ.

From this, using (4.4), (4.6), (4.7) and (4.11) we obtain

E(ρ1, B) ≤ C|
∫

∂B v
(p−2)/2(ν · ∇ρ)(1 − ρ)dξ|

≤ C|
∫

∂B
vp/2dξ|(p−1)/p|

∫

∂B
(1 − ρ)2dξ|1/p

≤ C|
∫

∂B
(1 − |u′ε|)

2dξ|1/p ≤ Cε

(4.12)
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Since uε is a minimizer of Eε(u,G), we have

Eε(uε, G) ≤ Eε(U,G),

where

U = (ρ1w,
√

1 − ρ2
1) on B; U = uε on G \B.

Namely,

Eε(uε, G) ≤ Eε(ρ1w,B) +Eε(uε, G \B).

Hence

Eε(uε, B) ≤ Eε(ρ1w,B)

= 1
p

∫

B(|∇ρ1|2 + ρ2
1|∇w|

2)p/2dx + 1
2εp

∫

B(1 − ρ2
1)dx,

(4.13)

where w =
u′

ε

|u′

ε|
. On one hand,

∫

B(|∇ρ1|2 + ρ2
1|∇w|

2)p/2dx−
∫

B(ρ2
1|∇w|

2)p/2dx

= p
2

∫

B

∫ 1

0
[(|∇ρ1|2 + ρ2

1|∇w|
2)(p−2)/2s

+(ρ2
1|∇w|

2)(p−2)/2(1 − s)]ds|∇ρ1|2dx

≤ C
∫

B
(|∇ρ1|p + |∇ρ1|2|∇w|p−2)dx.

(4.14)

On the other hand, by using (4.12) and (4.3) we have

∫

B

|∇ρ1|
2|∇w|p−2dx ≤ (

∫

B

|∇ρ1|
pdx)2/p ·(

∫

B

|∇w|pdx)(p−2)/p ≤ Cε2/p. (4.15)

Combining (4.13)-(4.15), we can derive

Eε(uε, B) ≤
1

p

∫

B

ρp
1|∇w|

pdx+ Cε2/p.

Thus (4.1) can be seen by noticing (4.7).

5 Proof of Theorem 1.3

Assume that uε is a minimizer, and B = B(x, r). By noting p > 2 and using

Jensen’s inequality, we have

Eε(uε, B) ≥
1

p

∫

B

|∇h|pdx+
1

p

∫

B

hp|∇w|pdx+
1

p

∫

B

|∇u3|
pdx+

1

2εp

∫

B

u2
3dx,
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where h = |u′ε|. Thus, from (4.1) it follows that,

1
p

∫

B(|∇h|p + |∇u3|p)dx+ 1
p

∫

B(hp − 1)|∇w|pdx+ 1
2εp

∫

B u
2
3dx

≤ Eε(uε, B) − 1
p

∫

B
|∇w|pdx ≤ Cε2/p.

(5.1)

Since |u3| ≤ 1 and (1.1), we have

|u3(x) − u3(y)| ≤ C‖u3‖W 1,p(K)|x− y|1−2/p ≤ C|x− y|1−2/p, ∀x, y ∈ K.

Hence, u2
3(x) ≥ (|u3(y)| − Cε1−2/p)2 when x ∈ B(y, ε). Substituting this into

(3.4) we obtain

π(|u3(y)| − Cε1−2/p)2ε2 ≤

∫

B(y,ε)

u2
3(x)dx ≤ Cεp

for any y ∈ K. This implies

sup
y∈K

|u3(y)| ≤ Cε1−2/p.

Thus, by using (4.2) and (3.3), we have that for any constant δ ∈ (0, 1),

1
p

∫

B
(1 − hp)|∇w|pdx ≤ 2p

p

∫

B
(1 − hp)hp|∇w|pdx

≤ C
∫

B u
2
3|∇uε|pdx ≤ Cε1−2/p.

(5.2)

Substituting this into (5.1), we can derive

∫

B

|∇h|pdx+

∫

B

|∇u3|
pdx+

1

εp

∫

B

u2
3dx ≤ C(ε1−2/p + ε2/p). (5.3)

If p ≤ 4, then we have finished. If p > 4, we will prove

Theorem 5.1 Let p0 ∈ (4, 5) satisfy p3 − 4p2 − 2p+ 4 = 0. Then

∫

B

|∇h|pdx +

∫

B

|∇u3|
pdx+

1

εp

∫

B

u2
3dx ≤ Cε1−2/p, when p ∈ (4, p0];

∫

B

|∇h|pdx+

∫

B

|∇u3|
pdx +

1

εp

∫

B

u2
3dx ≤ Cε

2p

p2
−2 , when p > p0.

Proof. Step 1. The idea of Proposition 4.1 is used. At first, from (5.3) it

follows that
∫

B

u2
3dx ≤ Cε

2

p
+p.
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Using this and the integral mean theorem, we see that there exists r2 ∈ (2R, r)

such that
∫

∂B(x,r2)

u2
3dx ≤ Cε

2

p
+p.

Next, consider the minimizer ρ2 of the functional

E(ρ,B(x, r2)) =
1

p

∫

B(x,r2)

(|∇ρ|2 + 1)p/2dx+
1

2εp

∫

B(x,r2)

(1 − ρ)2dx,

in W 1,p
|u′

ε|
(B(x, r2), R

+ ∪ {0}). By the same argument of (4.12) we also obtain

E(ρ2, B(x, r2)) ≤ Cε
1

p
( 2

p
+p).

Then, similar to the derivation of (4.1) we can see that

Eε(uε, B(x, r2)) ≤
1

p

∫

B

|∇w|pdx+ Cε
2

p2
( 2

p
+p)

.

At last, by processing as the proof of (5.3) we have

∫

B(x,r2)

|∇h|pdx+

∫

B(x,r2)

|∇u3|
pdx+

1

εp

∫

B(x,r2)

u2
3dx ≤ C(ε1−2/p + ε

2

p2
( 2

p
+p)

).

Step 2. Replacing (5.3) by the inequality above, and via the similar argument

of Step 1, we also deduce that there exist rj ∈ (2R, rj−1) such that for any

j = 1, 2, · · ·,

∫

B(x,rj)

|∇h|pdx+

∫

B(x,rj)

|∇u3|
pdx+

1

εp

∫

B(x,rj)

u2
3dx ≤ C(ε1−2/p+εaj ), (5.4)

where a1 = 2
p and aj = 2

p2 (aj−1 + p) for j = 2, 3, · · ·. Obviously, {aj} is

a increasing and bounded sequence. So we see easily that its limit is 2p
p2−2 .

Letting j → ∞ in (5.4) we have proved Theorem 5.1.

Combining Theorem 5.1 and (5.3) yields that Theorem 1.3 is proved.
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