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Abstract

We introduce a structure condition of parabolic type, which allows for the gen-
eralization to quasilinear parabolic systems of the known results of integrability,
and boundedness of local solutions to singular and degenerate quasilinear parabolic
equations.

1 Introduction

In this note, we investigate under which conditions it is possible to extend to systems
the results of local integrability and local boundedness known to hold for solutions to a
general class of degenerate and singular quasilinear parabolic equations. In particular,
we show that the results presented by DiBenedetto in [1, Chp. VIII] are true for a
larger class of problems, by providing conditions under which one can recover for weak
solutions of quasilinear parabolic systems the work contained in [5, 6]. Fundamental to
our approach is a new condition for the parabolicity of systems, which can be viewed as
the extension of an analogous notion for parabolic equations, introduced in [1, Lemma
1.1 pg 19].

Generalizations of the results in [1, Chp. VIII] to initial-boundary value problems
for systems have been proven in [7].

We study systems of the general form:

∂

∂t
ui −

∂

∂xj
Aij(x, t, u,∇u) = Bi(x, t, u,∇u) (1)

for i = 1, 2, ..., n, and (x, t) ∈ ΩT ≡ Ω× (0, T ) with Ω ⊆ R
N ; where we assume Aij

and Bi to be measurable functions in Ω × (0, T ) × R
n × R

Nn, here i = 1, 2, ..., n;
j = 1, 2, ..., N .
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By a weak solution of (1), we mean a function u = (u1, u2, . . . , un) with u ∈
L∞,loc(0, T ; L2,loc(Ω)) ∩ Lp,loc(0, T ; W 1

p,loc(Ω)) for some p > 1, which verifies

∫∫

ΩT

{

−ui
∂φi

∂t
+ Aij(x, t, u,∇u)

∂φi

∂xj

}

dxdt =

∫∫

ΩT

Bi(x, t, u,∇u)φi dxdt (2)

for all φ = (φ1, φ2, . . . , φn) ∈ C∞
0 (ΩT ;Rn).

To the system (1), we add the following classical structure conditions (see [1, Chp.
VIII]). For a.e. (x, t) ∈ ΩT , every u ∈ R

n, and v ∈ R
Nn, we assume that

(H1)
N
∑

j=1

n
∑

i=1

Aij(x, t, u, v)vij ≥ C0|v|
p − C3|u|

δ − φ0(x, t);

(H2) |Aij(x, t, u, v)| ≤ C1|v|
p−1 + C4|u|

δ(1− 1
p ) + φ1(x, t);

(H3) |Bi(x, t, u, v)| ≤ C2|v|
p(1− 1

δ ) + C5|u|
δ−1 + φ2(x, t),

for C0 > 0, C1, C2, . . . , C5 ≥ 0, with δ s.t. 1 < p ≤ δ <

(

N + 2

N

)

p ≡ m, and

where φ0, φ1, φ2 are non-negative functions which satisfy

(H4) φ0 ∈ L1,loc(ΩT ), φ1 ∈ L p
p−1

,loc(ΩT ), and φ2 ∈ L m
m−1

,loc(ΩT ).

Finally, we introduce and assume the parabolicity condition

(H5)
n
∑

i,k=1

N
∑

j=1

Aij(x, t, u, v)uiukvkj ≥ 0.

The main result of our work is the complete recovery for systems of the form (1)
of Theorem 1 in [5]:

Theorem 1 Let u be a weak solution of (1), and suppose that the structure conditions
(H1)-(H5) hold true, together with the following additional hypotheses:

(H6) φ0 ∈ Lµ,loc(ΩT ), φ1, φ2 ∈ Ls,loc(ΩT ), where µ > 1 and s >
(N + 2)p

(N + 2)p − N
;

(H7) u ∈ Lr,loc(ΩT ), with r > 1 and N(p − 2) + rp > 0.

If s, µ >
(N+p)

p , then u ∈ L∞,loc(ΩT );

if s = µ = (N+p)
p , then u ∈ Lq,loc(ΩT ) for any q < ∞;

if s, µ <
(N+p)

p , then u ∈ Lq,loc(ΩT ) for any q < q∗, where

q∗ = min

{

s(Np + p − N)

sN − (s − 1)(N + p)
,

µ(Np + 2p)

µN − (µ − 1)(N + p)

}

.

EJQTDE, 2004 No. 14, p. 2



Remark We would like to point out that the parabolicity condition (H5) is a quite
natural one to consider. In fact, for the case of a single equation it reduces to the
condition

Aj(x, t, u, v)u2vj ≥ 0,

which, for u 6= 0, is equivalent to the weak parabolicity condition presented in [1,
Lemma 1.1, p.19].

Further, in the simple case where

∂ui

∂t
−

∂

∂xj

(

ajm(x, t, u,∇u)
∂ui

∂xm

)

= Bi(x, t, u,∇u);

our requirement is satisfied if the matrix ajm(x, t, u,∇u) is for example positive defi-
nite. Indeed, since for the above system one has the identity

n
∑

i,k=1

N
∑

j=1

Aij(x, t, u, v)uiukvkj =
n
∑

i,k=1

N
∑

j,m=1

ajm(x, t, u, v) (uivim) (ukvkj) ,

(H5) can be rewritten as

n
∑

i,k=1

N
∑

j=1

Aij(x, t, u, v)uiukvkj =

N
∑

j,m=1

ajm(x, t, u, v)wmwj ≥ 0,

where we set wh =
∑

l ulvlh.
Finally, we note that (H5) is not so restrictive that the equation must have one of

these simple forms. For example, consider the perturbation

Aij(x, t, u, v) = ajm(x, t, u, v)vim + αij(x, t, u, v)

where the matrix ajm is positive definite. Define

λ(x, t, u, v) = min
|w|=1

ajm(x, t, u, v)wjwm > 0;

this exists and is obtained because

w 7→ ajm(x, t, u, v)wjwm

is positive and continuous for each (x, t, u, v) on the compact set {w ∈ R
N : |w| = 1}.

Then for any vector w ∈ R
N , w 6= 0

ajm(x, t, u, v)wjwm = ajm
wj

|w|
wm

|w| |w|2 ≥ λ|w|2.

Condition (H5) will be verified if the perturbation αij satisfies the smallness con-
dition

N
∑

j=1

n
∑

i=1

|αij(x, t, u, v)ui| ≤ λ(x, t, u, v)
N
∑

j=1

∣

∣

∣

∣

∣

n
∑

i=1

uivij

∣

∣

∣

∣

∣

.
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Indeed, we have

n
∑

i,k=1

N
∑

j=1

Aij(x, t, u, v)uiukvkj =

n
∑

i,k=1

N
∑

j=1

[

N
∑

m=1

ajmvim + αij

]

uiukvkj

=

N
∑

j,m=1

ajm

(

n
∑

i=1

uivim

)(

n
∑

k=1

ukvkj

)

+

n
∑

j=1

(

n
∑

i=1

αijui

)(

n
∑

k=1

ukvkj

)

≥

N
∑

j=1







λ

(

n
∑

k=1

ukvkj

)2

−

∣

∣

∣

∣

∣

n
∑

i=1

αijui

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

k=1

ukvkj

∣

∣

∣

∣

∣







≥ 0.

We follow the approach of [1, 5, 6] and start with the derivation, presented in Sec-
tion 2, of a local energy estimates for weak solutions to (1). We then outline, in Sec-
tion 3 and Section 4 how the methods in [5] can be applied to obtain local integrability
and boundedness.

We also remark that the techniques presented can be modified to handle doubly
degenerate problems, where Aij(x, t, u, v)vij ≥ Φ(|u|)|v|p − C3|u|

δ − φo(x, t) for
some Φ, following the same lines as the proof in [6].

2 Energy Estimates for u

2.1 Notation & Preliminaries

Let (x0, t0) ∈ ΩT , without loss of generality we can assume (x0, t0) = (0, 0). For
R > 0 we set QR = BR(0) × (−Rp, 0), and for −Rp ≤ τ ≤ 0, we define Qτ

R =
BR(0) × (−Rp, τ). For a fixed 0 < σ < 1, we consider a function ζ ∈ C∞(ΩT ) with
0 ≤ ζ ≤ 1, ζ = 1 in Qτ

σR, and ζ = 0 near |x| = R or t = −Rp. We also require that

|ζt| + |∇ζ|p ≤
Cσ

Rp
=

2

(1 − σ)pRp
.

We denote by ζk ∈ C∞
0 (Qτ

R) the elements of a sequence of functions ζk → ζ

uniformly in Qτ
R. While, for η > 0, we let Jη be a smooth, symmetric, mollifying

kernel in space-time, and for a given function f we use the notation fη ≡ Jη ∗ f to
represent its convolution with Jη.

Finally, for fixed ε > 0, and κ > 0, we consider the function

f(s) =
(s − κ)+

(s − κ)+ + ε
. (3)

In the following, we will use the fact that 0 ≤ f(s) ≤ 1, and that

f ′(s) =







0 s < κ,
ε

[(s − κ)+ + ε]2
s > κ
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verifies

0 ≤ f ′(s) ≤











0 s < κ,
1
ε κ < s < 2κ,
1

s κ s > 2κ,

(4)

provided 0 < ε < 1
2 .

We are now ready to start the derivation of our energy estimate. Fix η > 0, κ > 0
and consider the test function {ui,η(x, t)f(|uη(x, t)|)ζp

k (x, t)}η . Because this is a C∞
0

function for η sufficiently small, we can substitute it into the definition of weak solution
to obtain

∫∫

ΩT

− ui
∂

∂t
{ui,ηf(|uη|)ζ

p
k}η dx dt

+

∫∫

ΩT

Aij(x, t, u,∇u)
∂

∂xj
{ui,ηf(|uη|)ζ

p
k}η dx dt

=

∫∫

ΩT

Bi(x, t, u,∇u) {ui,ηf(|uη|)ζ
p
k}η dx dt.

(5)

For convenience of notation, we rewrite (5) in compact form as I1 + I2 = I3, and
discuss each of these terms in turn.

2.2 Estimate of I1

We begin by using the symmetry of the mollifying kernel, and integration by parts to
rewrite I1 as

I1 = −

∫∫

ΩT

ui,η
∂

∂t
{ui,ηf(|uη|)ζ

p
k} dx dt

=

∫∫

Qτ
R

(

∂

∂t
ui,η

)

ui,ηf(|uη|)ζ
p
k dx dt.

We then notice that summing over the index i implies

∑

i

ui,η
∂

∂t
ui,η =

1

2

∑

i

∂

∂t
(ui,η)2 =

1

2

∂

∂t
|uη|

2 = |uη|
∂

∂t
|uη|, (6)

and we derive

I1 =

∫∫

Qτ
R

|uη|
∂|uη|

∂t
f(|uη|)ζ

p
k dx dt.

If we now let k → ∞, thanks to the uniform convergence of ζk → ζ, and the smooth-
ness of the mollified functions we obtain

lim
k→∞

I1 =

∫∫

Qτ
R

|uη|
∂|uη|

∂t
f(|uη|)ζ

p dx dt.
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Proceeding in a standard fashion, we rewrite the integral on the right hand side as
∫∫

Qτ
R

∂

∂t

(

∫ |uη |

0

sf(s) ds

)

ζp dx dt

=

∫∫

Qτ
R

∂

∂t

{(

∫ |uη|

0

sf(s) ds

)

ζp

}

dx dt

− p

∫∫

Qτ
R

(

∫ |uη|

0

sf(s) ds

)

ζp−1ζt dx dt,

and applying integration by parts, since ζ = 0 on t = −Rp, we gather

lim
k→∞

I1 =

∫

BR

(

∫ |uη |

0

sf(s) ds

)

ζp dx

∣

∣

∣

∣

∣

t=τ

− p

∫∫

Qτ
R

(

∫ |uη |

0

sf(s) ds

)

ζp−1ζt dx dt.

(7)

We would like to take the limit for η ↓ 0 in (7), and we are able to do so, since from
∣

∣

∣

∣

∣

∫ |uη|

0

sf(s) ds −

∫ |u|

0

sf(s) ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ |uη |

|u|

sf(s) ds

∣

∣

∣

∣

∣

≤ γ1

∣

∣|uη|
2 − |u|2

∣

∣ ,

with γ1 = 1
2 (max |f |), we can conclude

∣

∣

∣

∣

∣

∫

BR

(

∫ |uη |

0

sf(s) ds −

∫ |u|

0

sf(s) ds

)

ζp dx

∣

∣

∣

∣

∣

t=τ

∣

∣

∣

∣

∣

≤ γ1

∫

BR

∣

∣|uη|
2 − |u|2

∣

∣ dx

∣

∣

∣

∣

t=τ

η↓0
−−−−−→ 0

for a.e. τ , and
∣

∣

∣

∣

∣

∫∫

Qτ
R

(

∫ |uη|

0

sf(s) ds −

∫ |u|

0

sf(s) ds

)

ζp−1ζt dx dt

∣

∣

∣

∣

∣

≤ γ2

∫∫

Qτ
R

∣

∣|uη|
2 − |u|2

∣

∣ dx dt
η↓0

−−−−−→ 0,

where γ2 is a constant that depends on σ, R and p. (Note that the above limits are zero
due to the fact that u ∈ L∞,loc(0, T ; L2,loc(Ω)).) In conclusion, we have the following
estimate

lim
η↓0

lim
k→∞

I1 =

∫

BR

(

∫ |u|

0

sf(s) ds

)

ζp dx

∣

∣

∣

∣

∣

t=τ

− p

∫∫

Qτ
R

(

∫ |u|

0

sf(s) ds

)

ζp−1ζt dx dt. (8)
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2.3 Estimate of I2

We start as in Section 2.2, and use the symmetry of the mollifying kernel to rewrite I2:

I2 =

∫∫

Qτ
R

Aij,η(x, t, u,∇u)
∂

∂xj
{ui,ηf(|uη|)ζ

p
k} dx dt.

We then take the limit for k → ∞, and by the smoothness of the mollified functions
we obtain

lim
k→∞

I2 =

∫∫

Qτ
R

Aij,η(x, t, u,∇u)
∂

∂xj
{ui,ηf(|uη|)ζ

p} dx dt. (9)

As done while deriving the estimate for I1, we would like to consider the limit
for η ↓ 0 as well. To do so, we notice that the structure condition (H2) implies the
inequality

∫∫

Qτ
R

|Aij(x, t, u,∇u)|
p

p−1 dx dt ≤ γ

∫∫

Qτ
R

[

|∇u|p + |u|δ + φ
p

p−1

1

]

dx dt.

From which, we have that Aij(x, t, u,∇u) ∈ L p
p−1

(Qτ
R), since δ < m and since by

the classical embedding theorems for parabolic spaces we know

u ∈ L∞,loc(0, T ; L2,loc(Ω)) ∩ Lp,loc(0, T ; W 1
p,loc(Ω)) ↪→ Lm,loc(ΩT ). (10)

Therefore, we obtain Aij,η(x, t, u,∇u)
η↓0
−→ Aij(x, t, u,∇u) in L p

p−1
(Qτ

R).

On the other hand,

∂

∂xj
{ui,ηf(|uη|)ζ

p} =
∂ui,η

∂xj
f(|uη|)ζ

p

+ ui,ηf ′(|uη |)
∂|uη|

∂xj
ζp + pui,ηf(|uη|)ζ

p−1 ∂ζ

∂xj
;

hence from ui,η → ui and ∇ui,η → ∇ui almost everywhere [3, Appendix C, Theorem
6] we conclude that

∂

∂xj
{ui,ηf(|uη|)ζ

p} →
∂

∂xj
{uif(|u|)ζp} a.e.

If next we use our estimates for f and f ′, we have the upper bound
∣

∣

∣

∣

∂

∂xj
{ui,ηf(|uη|)ζ

p}

∣

∣

∣

∣

p

≤

{

|∇ui,η | + 2κ
1

ε
|∇uη| + |uη|

1

κ|uη|
|∇uη| + C|uη |

}p

≤ C {|∇uη|
p + |uη|

p} ,

which, applying a slight generalization of Lebesgue’s Dominated Convergence Theo-
rem [4, §1.8], gives

∂

∂xj
{ui,ηf(|uη|)ζ

p}
η↓0
−→

∂

∂xj
{uif(|u|)ζp} in Lp(Q

τ
R).
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We then have that equation (9) yields

lim
η↓0

lim
k→∞

I2 =

∫∫

Qτ
R

Aij(x, t, u,∇u)
∂ui

∂xj
f(|u|)ζp dx dt

+

∫∫

Qτ
R

Aij(x, t, u,∇u)uif
′(|u|)

∂|u|

∂xj
ζp dx dt

+

∫∫

Qτ
R

Aij(x, t, u,∇u)uif(|u|)p ζp−1 ∂ζ

∂xj
dx dt. (11)

The first integral above can be estimated with the help of (H1) as follows:
∫∫

Qτ
R

Aij(x, t, u,∇u)
∂ui

∂xj
f(|u|)ζp dx dt ≥ C0

∫∫

Qτ
R

|∇u|pf(|u|)ζp dx dt

− C3

∫∫

Qτ
R

|u|δf(|u|)ζp dx dt −

∫∫

Qτ
R

φ0(x, t)f(|u|)ζp dx dt. (12)

To handle the second integral, we use the parabolicity assumption (H5), and the equal-

ity
∂|u|

∂xj
=

∂uk

∂xj

uk

|u|
, true for u 6= 0:

∫∫

Qτ
R

Aij(x, t, u,∇u)uif
′(|u|)

∂|u|

∂xj
ζp dx dt

=

∫∫

Qτ
R

Aij(x, t, u,∇u)uiuk
∂uk

∂xj

f ′(|u|)

|u|
ζp dx dt ≥ 0. (13)

For the last integral, we need (H2) to derive
∫∫

Qτ
R

Aij(x, t, u,∇u)uif(|u|)p ζp−1 ∂ζ

∂xj
dx dt

≥ −p C1

∫∫

Qτ
R

|∇u|p−1|u|f(|u|)ζp−1|∇ζ| dx dt

− p

∫∫

Qτ
R

(

C4 |u|
δ(1− 1

p )+1 f(|u|) ζp−1|∇ζ| + φ1(x, t)|u|f(|u|)ζp−1|∇ζ|
)

dx dt.

(14)

Finally, we combine (11), (12), (13), and (14) so to obtain the inequality:

lim
η↓0

lim
k→∞

I2 ≥ C0

∫∫

Qτ
R

|∇u|pf(|u|)ζp dx dt − C3

∫∫

Qτ
R

|u|δf(|u|)ζp dx dt

−

∫∫

Qτ
R

φ0(x, t)f(|u|)ζp dx dt − pC1

∫∫

Qτ
R

|∇u|p−1|u|f(|u|)ζp−1|∇ζ| dx dt

− p C4

∫∫

Qτ
R

|u|δ(1−
1
p )+1f(|u|)ζp−1|∇ζ| dx dt

− p

∫∫

Qτ
R

φ1(x, t)|u|f(|u|)ζp−1|∇ζ| dx dt. (15)
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2.4 Estimate of I3

Once again, our first step is to rewrite I3 in the form

I3 =

∫∫

Qτ
R

Bi,η(x, t, u,∇u) {ui,ηf(|uη|)ζ
p
k} dx dt,

and to consider the limit for k → ∞:

lim
k→∞

I3 =

∫∫

Qτ
R

Bi,η(x, t, u,∇u) {ui,ηf(|uη|)ζ
p} dx dt.

To justify taking the limit for η ↓ 0 in this case, we proceed by noticing that (H3)
implies

|Bi(x, t, u,∇u)|
m

m−1 ≤ C2|∇u|p(1−
1
δ )(

m
m−1 ) + C5|u|

m δ−1

m−1 + φ
m

m−1

2 (x, t).

Which yields Bi,η −→ Bi in L m
m−1

(Qτ
R), in view of the embedding (10), and the

relations δ < m, p
(

1 − 1
δ

)

(

m
m−1

)

= p
(

1−1/δ
1−1/m

)

< p. Moreover, since we know that

ui,ηf(|uη|)ζ
p −→ uif(|u|)ζp for a.e. (x, t), and |ui,ηf(|uη|)ζ

p|m ≤ C|uη|
m;

we can apply the same generalization of Lebesgue’s Dominated Convergence Theorem
to see that

ui,ηf(|uη|)ζ
p −→ uif(|u|)ζp in Lm(Qτ

R).

Thus,

lim
η↓0

lim
k→∞

I3 =

∫∫

Qτ
R

Bi(x, t, u,∇u)uif(|u|)ζp dx dt, (16)

and we can use (H3) once more to conclude

lim
η↓0

lim
k→∞

I3 ≤ C2

∫∫

Qτ
R

|∇u|p(1−
1
δ )|u|f(|u|)ζp dx dt

+ C5

∫∫

Qτ
R

|u|δf(|u|)ζp dx dt +

∫∫

Qτ
R

φ2(x, t)|u|f(|u|)ζp dx dt. (17)

2.5 The Energy Estimate

To derive our energy estimate (presented in Proposition 3 below), we use the interme-
diate result stated as Lemma 2. This is a direct consequence of equations (8), (15)
and (17): starting from (5), one can use the bounds given in the previous sections, and

then apply Young’s inequality to treat the terms involving |∇u|p−1, |∇u|p(1−
1
δ ), and

|u|p(1−
1
δ ).
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Lemma 2 Let p > 1, let f be defined by (3), and let u ∈ L∞,loc(0, T ; L2,loc(Ω)) ∩
Lp,loc(0, T ; W 1

p,loc(Ω)) be a weak solution of (1). If the assumptions (H1)-(H5) are
verified, then for any Qτ

R(x0, t0) = BR(x0) × (t0 − Rp, τ) ⊂⊂ ΩT we have

∫

BR

(

∫ |u|

0

sf(s) ds

)

ζp dx

∣

∣

∣

∣

∣

t=τ

+

∫∫

Qτ
R

|∇u|pf(|u|)ζp dx dt

≤ γ

(

∫∫

Qτ
R

|u|δf(|u|)ζp dx dt +

∫∫

Qτ
R

|u|pf(|u|)|∇ζ|p dx dt

+

∫∫

Qτ
R

(

∫ |u|

0

sf(s) ds

)

ζp−1|ζt| dx dt +

∫∫

Qτ
R

φ0(x, t)f(|u|)ζp dx dt+

∫∫

Qτ
R

φ1(x, t)|u|f(|u|)ζp−1|∇ζ| dx dt +

∫∫

Qτ
R

φ2(x, t)|u|f(|u|)ζp dx dt

)

(18)

for some constant γ = γ(C0, C1, C2, C3, C4, C5, p).

To extract useful information from Lemma 2, we need to substitute our choice of
f(s), and then let ε ↓ 0. We first note that

∫ |u|

0

sf(s) ds =

∫ |u|

0

(s − κ)+
(s − κ)+ + ε

s ds ≥

∫ |u|

0

(s − κ)2+
(s − κ)+ + ε

ds

≥ χ[|u| > κ]

∫ |u|

κ

(s − κ)2

(s − κ) + ε
ds ≥

∫ (|u|−κ)+

0

s2

s + ε
ds

≥
1

2
(|u| − κ)2+ − ε(|u| − κ)+ + ε2 ln [(|u| − κ)+ + ε] − ε2 ln ε, (19)

which implies

lim
ε↓0

∫ |u|

0

sf(s) ds =

∫ |u|

0

(s − κ)+
(s − κ)+ + ε

s ds ≥
1

2
(|u| − κ)2+;

and hence

lim
ε↓0

∫

BR

(

∫ |u|

0

sf(s) ds

)

ζp dx

∣

∣

∣

∣

∣

t=τ

≥
1

2

∫

BR

(|u| − κ)2+ζp dx

∣

∣

∣

∣

∣

t=τ

.

By remarking that if ε < κ < s then
(s − κ)s

s − κ + ε
= s − ε

[

1 +
κ − ε

s − κ + ε

]

≤ s, one can

see that
∫ |u|

0

sf(s) ds =

∫ |u|

0

(s − κ)+
(s − κ)+ + ε

s ds = χ[|u| > κ]

∫ |u|

κ

(s − κ)s

s − κ + ε
ds

≤ χ[|u| > κ]

∫ |u|

κ

s ds ≤
1

2
|u|2χ[|u| > κ].
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Moreover, since

f(|u|) =
(|u| − κ)+

(|u| − κ)+ + ε
↑ χ[|u| > κ] as ε ↓ 0,

we can use the Monotone Convergence Theorem to pass to the limit as ε ↓ 0 in the
remaining terms of (18), and gather the bound

1

2

∫

BR

(|u| − κ)2+ζp dx

∣

∣

∣

∣

∣

t=τ

+

∫∫

Qτ
R

|∇u|pχ[|u| > κ]ζp dx dt

≤ γ

(

∫∫

Qτ
R

|u|δχ[|u| > κ] dx dt +

∫∫

Qτ
R

|u|pχ[|u| > κ]|∇ζ|p dx dt

+

∫∫

Qτ
R

|u|2χ[|u| > κ]ζt dx dt +

∫∫

Qτ
R

φ0(x, t)χ[|u| > κ] dx dt

+

∫∫

Qτ
R

φ1(x, t)|u|χ[|u| > κ]|∇ζ| dx dt +

∫∫

Qτ
R

φ2(x, t)|u|χ[|u| > κ] dx dt

)

.

In turn, the above inequality leads to the classical local energy estimate stated in Propo-
sition 3 below, if one takes in account the relation

∣

∣∇|u|
∣

∣

p
≤ |∇u|p.

Proposition 3 (Local Energy Estimate) Under the hypotheses (H1)-(H5), if u is a weak
solution of (1) then for QR(x0, t0) = BR(x0) × (t0 − Rp, t0) ⊂⊂ ΩT , 0 < σ < 1,
and κ > 0

ess sup
−Rp<τ<0

∫

BσR

(|u| − κ)2+ dx

∣

∣

∣

∣

∣

t=τ

+

∫∫

QσR

|∇(|u| − κ)+|
p
ζp dx dt

≤ γ

(
∫∫

QR

|u|δχ[|u| > κ] dx dt +
1

(1 − σ)pRp

∫∫

QR

|u|pχ[|u| > κ] dx dt

+
1

(1 − σ)pRp

∫∫

QR

|u|2χ[|u| > κ] dx dt +

∫∫

QR

φ0(x, t)χ[|u| > κ] dx dt

+
1

(1 − σ)R

∫∫

QR

φ1(x, t)|u|χ[|u| > κ] dx dt

+

∫∫

QR

φ2(x, t)|u|χ[|u| > κ] dx dt

)

.

(20)

for some constant γ = γ(C0, C1, C2, C3, C4, C5, p).

3 Higher Integrability of u

Owing to Proposition 3, we can proceed as in [5] to show higher integrability properties
for u, that is the first part of Theorem 1. In fact, thanks to the Sobolev embedding for
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parabolic spaces [1, Chap. 1], and hypotheses (H6) for the functions φ0, φ1, and φ2,
we have
(
∫∫

QσR

(|u| − κ)
p( N+2

N )
+ ζp dx dt

)
1

1+
p
N

≤ γ

∫∫

QR

|u|δχ[|u| > κ] dx dt

+
γ

(1 − σ)pRp

∫∫

QR

|u|pχ[|u| > κ] dx dt

+
γ

(1 − σ)pRp

∫∫

QR

|u|2χ[|u| > κ] dx dt + γ ||φ0||Lµ(QR)(meas[|u| > κ])1−
1
µ

+ γ

(

||φ1||Ls(QR)

(1 − σ)R
+ ||φ2||Ls(QR)

)
∫∫

QR

|u|χ[|u| > κ] dx dt.

(21)

Inequality (21) is the key link needed to obtain for our systems exactly the same
higher integrability result proven in [5, Proposition 3] for single equations:

Proposition 4 Under the hypotheses and notation of Theorem 1, we have that

if s, µ ≥ (N+p)
p , then u ∈ Lq,loc(ΩT ) for any q < ∞;

if s, µ <
(N+p)

p , then u ∈ Lq,loc(ΩT ) for any q < q∗.

Indeed, suppose u ∈ Lβ,loc. Then we can use (21) to see that

{

κ(N+2

N )p meas
QσR

[|u| > 2κ]

}
1

1+p/N

≤ Cγ,R,σ,p||u||
β
Lβ(QR)

{

(

1

κ

)β−δ

+

(

1

κ

)β−p

+

(

1

κ

)β−2
}

+ C||u||
β(1− 1

µ )
Lβ(QR)

(

1

κ

)β(1− 1
µ )

+ C||u||
β(1− 1

s )
Lβ(QR)

(

1

κ

)β(1− 1
s )−1

.

Therefore, if

α(β) =
N + 2

N
p +

(

1 +
p

N

)

min

{

β − 2, β − δ, β

(

1 −
1

s

)

− 1, β

(

1 −
1

µ

)}

then u ∈ Lweak
α(β),loc. Thus u ∈ Lq,loc(QR) for all q < α(β), and we can iterate this

process starting from β0 = max{2,
N + 2

N
p, r} to obtain the result. The details can be

found in [5].

4 Boundedness of u

The L∞ local estimate part of Theorem 1 is a straightforward application of DeGiorgi’s
technique; again the details can be found in [5]. In particular, we fix ρ > 0, σ > 0, so
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that Qρ ⊂⊂ ΩT . For each integer n, we define

ρn = σρ +
(1 − σ)

2n
ρ,

and set Qn = Qρn . Next we fix κ > 0 to be chosen later, and set

κn = κ

(

1 −
1

2n+1

)

.

For N+2
N p > 2, we consider

Yn =
1

measQn

∫∫

Qn

|u − κn|
m dx dt,

while for N+2
N p ≤ 2, we take

Yn =
1

measQn

∫∫

Qn

|u − κn|
λ dx dt,

for λ sufficiently large. This is well defined thanks to the local integrability proven in
Section 3. We then apply the local energy estimate (21)in a standard way to obtain an
estimate of the form

Yn+1 ≤ γ(Bn
1 Y 1+ε1

n + Bn
2 Y 1+ε2

n + Bn
3 Y 1+ε3

n ),

for positive constants γ, B1, B2, B3, ε1, ε2 and ε3. As final step, we choose κ suffi-
ciently large so to have Yn → 0 as n → ∞ which implies |u| < κ in Qσρ.

It should be clear from the above presentation how the crucial roles in the gener-
alization of the results in [5] to system of the form (1) are played by the local energy
estimate of Proposition 3, and by the fact that the techniques in [5] really depend just
on |u|. In a similar fashion, it is an easy exercise to check that the same ingredients
(Proposition 3 and replacement of u by |u|) lead to the more general results of [6] .
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