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A GLOBAL BIFURCATION RESULT OF A NEUMANN

PROBLEM WITH INDEFINITE WEIGHT

ABDELOUAHED EL KHALIL & MOHAMMED OUANAN

Abstract. This paper is concerned with the bifurcation result of
nonlinear Neumann problem

{

−∆pu = λm(x)|u|p−2u + f(λ, x, u) in Ω
∂u
∂ν

= 0 on ∂Ω.

We prove that the principal eigenvalue λ1 of the corresponding
eigenvalue problem with f ≡ 0, is a bifurcation point by using a
generalized degree type of Rabinowitz.

1. Introduction

The purpose of this paper is to study a bifurcation phenomenon for
the following nonlinear elliptic problem

(P)

{

−∆pu = λm(x)|u|p−2u + f(λ, x, u) in Ω
∂u
∂ν

= 0 on ∂Ω,

where Ω is a bounded domain of IRN , N ≥ 1, with smooth boundary and ν
is the unit outward normal vector on ∂Ω; the weight function m belongs to
L∞(Ω) and λ is a parameter. We assume that

∫

Ω m(x)dx < 0 and |Ω+| 6= 0

with Ω+ = {x ∈ Ω; m(x) > 0}, where | . | is the Lebesgue measure of IRN .
The so-called p-Laplacian is defined by −∆pu = −∇.(|∇u|p−2∇u) which
occurs in many mathematical models of physical processes as glaciology,
nonlinear diffusion and filtration problem, see [18], power-low materials [2],
the mathematical modelling of non-Newtonian fluids [1]. For a discussion of
some physical background, see [10]. In this context and for certain physical
motivations, see for example [17]. Observe that in the particular case f ≡ 0
and p = 2, (P) cames linear.

The nonlinearity f is a function satisfying some conditions to be specified
later.

Classical Neumann problems involving the p-Laplacian operator have
been studied by many authors. Senn and Hess [14, 15] studied an eigen-
value problem with Neumann boundary condition. Bandele, Pizio and Tesei
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[4] studied the existence and uniqueness of positive solutions of some nonlin-
ear Neumann problems; we cite also the paper [6] where the authors studied
the role played by the indefinite weight on the existence of positive solution.
In [16], the author shows that the first positive eigenvalue λ1, of

(E)

{

−∆pu = λm(x)|u|p−2u in Ω
∂u
∂ν

= 0 on ∂Ω

is well defined and if
∫

Ω m(x) dx < 0, it is simple and isolated. These
fundamental properties will be used in proof of our main bifurcation result.

In general, variational method and bifurcation theory have been used
in pure and applied mathematics to establish the existence, multiplicity
and structure of solutions to Partial Differential Equations. However, the
relationship between these two methods have remained largely unrecognized
and searchers have tended to use one method or the other. The present paper
gives an example of nonlinear partial differential equation with Neumann
boundary condition, expanding variational and bifurcation methods to occur
the connection between these two distinct ”arguments”.

In recent years, bifurcation problems with a particular with a particular
nonlinearity were studied by several authors, with the right hand side of the
first equation of the form f and the Direchlet boundary condition. In fact,
bifurcation Direchlet boundary condition problems with other conditions on
m and f were studied on bounded smooth domains by [5] and [9]. These
results were extended for any bounded domain and m is only locally bounded
by [11] and [12]. The authors considered the bifurcation phenomena, namely
on the interior of domain. The case Ω = IRN was treated by Dràbek and
Huang [13] under some appropriate hypotheses.

The purpose of this paper is to study the bifurcation phenomenon from

the first eigenvalue of (E) when

∫

Ω
m(x) dx < 0, by using a combination

of topological and variational methods. Our main result is formulated by
Theorem 3.2, where we investigate the situation improving the conditions
of the nonlinearity f for Neumann boundary condition. In Proposition 3.1,
we give a characterization of the bifurcation points of (P) related to the
spectrum of (E). We establish the existence of a global branch of nonlinear
solutions pairs (λ, u), with u 6= 0, bifurcating from the trivial branch at λ =
λ1. Bifurcation here means that there is a sequence of nontrivial solutions
(λ, u), with u 6= 0, going to zero as λ approaches the right eigenvalues.

The rest of the paper is organized as follows: Section 2 is devoted to
statement of some assumptions and notations which we use later and prove
some technical preliminaries; in Section 3 we verify that the topological
degree is well defined for our operators in order to be able to show that this
degree has a jump, when λ crosses λ1, which implies the bifurcation result.
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In fact, we may employ the global bifurcation result of that of Rabinowitz
[19].

2. Assumptions and Preliminaries

We first introduce some basic definitions, assumptions and notations.
Here p > 1, Ω is a bounded domain in IRN , (N ≥ 1) with a smooth bound-
ary. W 1,p(Ω) is the usual Sobolev space, equipped with the standard norm

‖u‖1,p =

(
∫

Ω
|∇u|p dx +

∫

Ω
|u|p dx

)
1

p

, u ∈ W 1,p(Ω).

2.1. Assumptions. We make the following assumptions:
f : Ω × IR × IR −→ IR is a Carathéodory’s function, satisfying the homoge-
nization condition type

f(λ, x, s) = o(|s|p−1), as s → 0 (2.1)

uniformly a.e. with respect to x ∈ Ω and uniformly with respect to λ in any
bounded subset of IR. Moreover f satisfies the asymptotic condition:
There is q ∈ (p, p∗) such that

lim
|s|→+∞

f(λ, x, s)

|s|q−1
= 0, (2.2)

uniformly a.e. with respect to x ∈ Ω and uniformly with respect to λ in any
bounded subset of IR. Here p∗ is the critical Sobolev exponent defined by

p∗ =

{

Np
N−p

if N > p

+∞ if N ≤ p,

2.2. Definitions. 1. By a solution of (P), we understand a pair (λ, u) in
IR × W 1,p(Ω) satisfying (P) in the weak sense, i.e.,

∫

Ω
|∇u|p−2∇u∇v dx = λ

∫

Ω
m(x)|u|p−2uv dx +

∫

Ω
f(λ, x, u)v dx, (2.3)

for all v ∈ W 1,p(Ω). This is equivalent to saying that u is a critical point of
the energy functional corresponding to (P) defined as

1

p

∫

Ω
|∇u|p dx −

λ

p

∫

Ω
m(x)|u|pdx −

∫

Ω
F (λ, x, u)dx,

where F denoted the Nemitskii operator associated to f . In other words,
F is the primitive of f with respect to the third variable, i.e., F (λ, x, u) =
∫ u

0
f(λ, x, s) ds. We note that the pair (λ, 0) is a solution of (P) for every

λ ∈ IR. The pairs of this form will be called the trivial solutions of (P). We
say that P = (µ, 0) is a bifurcation point of (P), if in any neighborhood of
P in IR × W 1,p(Ω) there exists a nontrivial solution of (P).
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2. Throughout, we shall denote by X a real reflexive Banach space and
by X ′ stand for its dual with respect to the pairing 〈., .〉. We shall deal
with mapping T acting from X into X ′. T is demicontinuous at u in X, if
un → u strongly in X, implies that Tun ⇀ Tu weakly in X ′. T is said to
belong to the class (S+), if for any sequence un weakly convergent to u in
X and lim sup

n→+∞
〈Tun, un − u〉 ≤ 0, it follows that un → u strongly in X.

2.3. Degree theory. If T ∈ (S+) and T is demicontinuous, then it is pos-
sible to define the degree Deg[T ;D, 0], where D ⊂ X is a bounded open set
such that Tu 6= 0 for any u ∈ ∂D. Its properties are analogous to the ones
of the Leray-Schauder degree (cf. [7]).

Assume that T is a potential operator, i.e., for some continuously dif-
ferentiable functional Φ : X → IR, Φ′(u) = Tu, u ∈ X. A point u0 ∈ X
will be called a critical point of Φ if Φ′(u0) = 0. We say that u0 is an iso-
lated critical point of Φ if there exists ε > 0 such that for any u ∈ Bε(u0),
Φ′(u) 6= 0 if u 6= u0. Then, the limit

Ind(T, u0) = lim
ε→0+

Deg[Φ′;Bε(u0), 0]

exists and is called the index of the isolated critical point u0, where Br(w)
denotes the open ball of radius r in X centered at w.

Now, we can formulate the following two lemmas which we can find in
[20].

Lemma 2.1. Let u0 be a local minimum and an isolated critical point of Φ.
Then

Ind(Φ′, u0) = 1.

Lemma 2.2. Assume that 〈Φ′(u), u〉 > 0 for all u ∈ X, ‖u‖X = r. Then

Deg[Φ′;Bρ(0), 0] = 1.

2.4. Preliminaries. Let us define, for (u, v) ∈ W 1,p(Ω)×W 1,p(Ω), the op-
erators

Ap, G : W 1,p(Ω) → (W 1,p(Ω))′

and
F : IR × W 1,p(Ω) → (W 1,p(Ω))′

〈Apu, v〉 =

∫

Ω
|∇u|p−2∇u∇v dx

〈Gu, v〉 =

∫

Ω
m(x)|u|p−2uv dx

〈F (λ, u), v〉 =

∫

Ω
f(λ, x, u)v dx
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Remark 2.1. (i) Due to (2.3) a function u is a weak solution of (P) if, and
only if,

Apu − λGu − F (λ, u) = 0 in (W 1,p(Ω))′ (2.4)

(ii) The operator Ap has the following properties:
(a) Ap is odd, (p − 1)-homogeneous and strictly monotone, i.e.,

〈Apu − Apv, u − v〉 > 0 ∀u 6= v.

(b) Ap ∈ (S+).

Lemma 2.3. G is well defined, compact, odd and (p − 1)-homogeneous.

Proof. The definition and compactness of G are required by the compact-
ness of Sobolev embedding

W 1,p(Ω) ↪→ Lp(Ω).

The oddness and (p− 1) homogeneity of G are obvious. Thus, the lemma is
proved.

Lemma 2.4. For any λ ∈ IR, the Nemitskii operator F (λ, .) is well defined,
compact and F (λ, 0) = 0. Moreover, we have

lim
‖u‖1,p→0

F (λ, u)

‖u‖p−1
1,p

= 0 in (W 1,p(Ω))′, (2.5)

uniformly for λ in any bounded subset of IR.

Proof. Conditions (2.1) and (2.2) imply that for any ε > 0, there are two
reals δ = δ(ε) and M = M(δ) > 0 such that for a.e., x ∈ Ω, we have

|f(λ, x, s)| ≤ ε|s|p−1 for |s| ≤ δ (2.6)

and
|f(λ, x, s)| ≤ M |s|q−1 for |s| ≥ δ. (2.7)

Therefore, for 0 < ε ≤ 1, we get by integration on Ω that
∫

Ω
|f(λ, x, u(x))|q

′

dx ≤

∫

Ω
|u(x)|q

′(p−1) dx + M

∫

Ω
|u(x)|q dx. (2.8)

We have q′(p−1) ≤ p′(p−1) = p < q. Thus Lq(Ω) ↪→ Lq′(p−1)(Ω) and there
is a constant c > 0 such that

∫

Ω
|u(x)|q

′(p−1)dx ≤ c

∫

Ω
|u(x)|qdx. (2.9)

Inserting (2.9) in (2.7), we deduce the estimate
∫

Ω
|f(λ, x, u(x))|q

′

dx ≤ (c + M)

∫

Ω
|u(x)|q dx. (2.10)

Thus F (λ, .) maps Lq(Ω) into its dual Lq′(Ω) continuously ( for more detail
on the properties of Nemitskii operator the reader can see [8] ). Moreover,
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if un ⇀ u in W 1,p(Ω) then un → u in Lq(Ω), because p < q < p∗ and

F (λ, un) → F (λ, u) in Lq′(Ω). Since Lq′(Ω) ↪→ (W 1,p(Ω))′, it follows that
F (λ, un) → F (λ, u) in (W 1,p(Ω))′. This implies that F (λ, .) is compact. It
is not difficult to verify that F (λ, 0) = 0, for all λ ∈ IR.

In virtue of (2.1), we have
F (λ, u)

‖u‖p−1
1,p

→ 0 in Lq′(Ω), as u → 0 in W 1,p(Ω).

Indeed, set u = u
‖u‖1,p

. Hence

F (λ, u)

‖u‖p−1
1,p

=
F (λ, u)

|u|p−1
|u|p−1. (2.11)

From this and Hölder’s inequality, we deduce that

∫

Ω

∣

∣

∣

∣

∣

F (λ, u)

‖u‖p−1
1,p

∣

∣

∣

∣

∣

q′

dx ≤

[

∫

Ω

(

|F (λ, u(x))|

|u(x)|p−1

)q′t

dx

]
1

t [
∫

Ω
|u|(p−1)q′t′dx

]
1

t′

,

(2.12)
for some t > 0 which satisfies

q′(p − 1)

p∗
<

1

t
<

p∗ − (p − 1)q′

p∗
. (2.13)

This is always possible, since p < q < p∗. By (2.6) and (2.7), we conclude
that

∥

∥

∥

∥

∥

∣

∣

∣

∣

F (λ, u)

|u|p−1

∣

∣

∣

∣

q′
∥

∥

∥

∥

∥

t

t

≤ ε|Ω| + M q′t

∫

Ω
|u|q

′t(q−p)dx, ∀ε > 0. (2.14)

From this inequality and the fact that u → 0 in W 1,p(Ω), we have the limit
∥

∥

∥

∥

∥

∣

∣

∣

∣

F (λ, u)

|u|p−1

∣

∣

∣

∣

q′
∥

∥

∥

∥

∥

t

t

→ 0 as u → 0 in W 1,p(Ω).

On the other hand, u belongs to Lp∗(Ω) ( because

∫

Ω
|u|p

∗

dx ≤ c). Then,

we find a constant c > 0 such that

‖|u|(p−1)q′‖t′ ≤ c,

since q′t′(p − 1) < p∗ by (2.13). This completes the proof.

Remark 2.2. Note that every continuous map T : X −→ X ′ is also demi-
continuous. Note also, that if T ∈ (S+) then (T +K) ∈ (S+) for any compact
operator K : X −→ X ′.

Remark 2.3. λ is an eigenvalue of (E) if and only if, u ∈ W 1,p(Ω)\{0}
solves

Apu − λGu = 0. (2.15)
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Now, define an operator Tλ : W 1,p(Ω) → (W 1,p(Ω))′; by Tλu = Apu −
λGu − F (λ, u).
In view of Lemma 2.3, Lemma 2.4, Remark 2.1 and Remark 2.2, it follows
that, for ε > 0, sufficiently small, the degree

Deg[Tλ;Bε(0), 0], (2.16)

is well defined for any λ ∈ IR such that Tλu 6= 0 for any ‖u‖1,p = ε ( here
Bε(0) is the open ball of radius ε in W 1,p(Ω) centered at 0 ).
By using the same argument as used in proof of Lemma 2.3, we can state
the following proposition which plays a crucial role in our bifurcation result.

Proposition 2.1. If (µ, 0) is a bifurcation point of problem (P), then µ is
an eigenvalue of (E).

Proof. Fix µ ∈ IR. Since (µ, 0) ∈ IR×W 1,p(Ω) is a bifurcation of (P) there
exists a sequence {(λj , uj)}j ⊂ IR × W 1,p(Ω) of nontrivial solutions of the
problem (P) such that

λj → µ in IR and uj → 0 in W 1,p(Ω), (2.17)

as j → +∞.
(λj , uj) solve the equation (2.4). Therefore, by (p−1)−homogeneity we have

Apvj − λjGvj =
F (λj , uj)

‖uj‖
p−1
1,p

,

where vj =
uj

‖uj‖
p−1
1,p

. The sequence (vj)j is bounded in W 1,p(Ω). Thus, there

is a function v ∈ W 1,p(Ω) such that vj ⇀ v in W 1,p(Ω) ( for a subsequence
if necessary ). Then, by combining Remark 2.1, Lemma 2.3 and Lemma 2.4,
we obtain that vj → v strongly in W 1,p(Ω) and

0 = Apvj − λjGvj −
F (λj , uj)

‖uj‖
p−1
1,p

→ Apv − µGv. (2.19)

Then
Apv = µGv in (W 1,p(Ω))′. (2.20)

It is clear that v 6= 0, because ‖ vj ‖1,p= 1,∀j ∈ IN ∗. Hence (2.20) proves
that µ is an eigenvalue of (E) in view of Remark 2.3. This clearly concludes
the proof.

3. Main Results

The goal of this section it to prove our main bifurcation results. In order
to do so, we shall introduce further notations and some properties of the
principal positive eigenvalue of the eigenvalue problem (E) which will be used
in our analysis. For this purpose, consider the variational characterization
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of λ1.
We recall that λ1 can be characterized variationally as follows

(3.1) λ1 = inf

{
∫

Ω
|∇u|p dx; u ∈ W 1,p(Ω),

∫

Ω
m(x)|u|pdx = 1

}

.

In fact, we have the following theorem.

Theorem 3.1. [16] Let us suppose that m ∈ L∞(Ω) such that mes{x ∈
Ω/m(x) > 0} 6= 0, then we have
(i) λ1 is effectively an eigenvalue of (E) with weight m; and 0 < λ1 < +∞
if and only if m changes sign and

∫

Ω m(x) dx < 0.
(ii) λ1 is simple, namely, if u and v are two eigenfunctions associated to λ1

then u = kv for some k.
(iii) If u is an eigenfunction associated with λ1, then min

Ω
|u| > 0.

(iv) λ1 is isolated.

Lemma 3.1. Let (un)n be a sequence in W 1,p(Ω) such that

‖∇un‖
p
p − λ

∫

Ω
m(x)|un|

p dx ≤ c, (∗)

for some 0 < λ < λ1 and positive constant c independent on n. Then (un)n
is bounded in W 1,p(Ω).

Proof. From (∗), we deduce that

‖∇un‖
p
p − λ‖m‖∞‖un‖

p
p ≤ c.

That is,
‖∇un‖

p
p ≤ c + λ‖m‖∞‖un‖

p
p, ∀n ∈ IN ∗.

Thus it suffices to show that (‖un‖p)n is bounded. Suppose by contradiction
that ‖un‖p → ∞ ( for a suitable subsequence if necessary). We distinguish
two cases:

• ‖∇un‖p is bounded. Set vn = un

‖un‖p
, ∀n ∈ IN ∗. Thus (vn)n is

bounded in W 1,p(Ω). Consequently, by compactness there exists
a subsequence (noted also (vn)n) such that vn ⇀ v in W 1,p(Ω),
vn → v in Lp(Ω) and vn → v almost everywhere in Ω, for some func-
tion v ∈ W 1,p(Ω). It is clear that ‖v‖p = 1 ( because ‖vn‖p = 1, ∀n
) and

‖v‖1,p ≤ lim inf
n→+∞

‖vn‖1,p

which implies that

‖∇v‖p ≤ lim inf
n→+∞

‖∇un‖p

‖un‖p
= 0.
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This yields that v is, almost everywhere, in Ω, equal to a nonzero
constant d.
Now, dividing (∗) by the quantity ‖un‖

p
p and letting n → +∞, we

obtain

−λ | d |

∫

Ω
m(x) dx ≤ 0.

So, we get that
∫

Ω m(x) dx ≥ 0 which is a contradiction.
• ‖∇un‖p is unbounded. We can suppose that, for n large enough,

‖∇un‖p > c
1

p , where c is given by (∗).
From (∗), we deduce that

−λ

∫

Ω
m(x) | un |p dx < 0,

for all n large enough. That is
∫

Ω
m(x) | un |p dx > 0.

As n tends to plus infinity, un is admissible in the variational char-
acterization of λ1 given by (3.1). Thus

λ1

∫

Ω
m(x) | un |p dx ≤ ‖∇un‖

p
p.

Set vn = un

‖∇un‖1,p
. Thus (vn)n is bounded in W 1,p(Ω) and conse-

quently there is a function v ∈ W 1,p(Ω) such that vn converges to v
weakly in W 1,p(Ω) and strongly in Lp(Ω) (for a subsequence if nec-
essary).
Dividing (∗) by ‖∇un‖

p
1,p and combining with last inequality, we

arrive at

λ1

∫

Ω
m(x) | vn |p dx − λ

∫

Ω
m(x) | vn |p dx ≤

c

‖∇un‖
p
1,p

. (∗∗)

Let n goes to +∞ in (∗∗), we conclude that

(λ1 − λ)

∫

Ω
m(x) | v |p dx ≤ 0.

This and the fact that
∫

Ω m(x) | v |p dx ≥ 0 imply that

λ1 − λ ≤ 0.

Which is a contradiction.

Finally, from the both above cases, we conclude that (‖∇un‖p)n is bounded
and the proof of the lemma is achieved.
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Let E = IR × W 1,p(Ω) be equipped with the norm

‖(µ, u)‖ =
(

|µ|2 + ‖u‖2
1,p

)
1

2

Definition 3.1. We say that

C = {(λ, u) ∈ E : (λ, u)) solves (P), u 6= 0}

is a continuum (or branch) of nontrivial solutions of (P), if it is a connected
subset in E.

Theorem 3.2. Under the assumptions (2.1) and (2.2), the pair (λ1, 0) is
a bifurcation point of (P). Moreover, there is a continuum of nontrivial
solutions C of (P) such that (λ1, 0) ∈ C and C is either unbounded in E or
there is µ 6= λ1, an eigenvalue of (P), with (µ, 0)) ∈ C.

Proof. We shall employ the homotopy invariance principle of the considered
degree to deduce that

Deg[Ap − λG;Bε(0), 0] (3.2)

jumps from 1 to −1, as λ crosses λ1. If this fact is proved, then Theorem
3.1 follows exactly as in the classical global bifurcation result of Rabinowitz
[19]. Choose δ = δ(λ) > 0 small enough, so that λ1 − δ > 0 and the interval
(λ1 − δ, λ1 + δ) does not contain any eigenvalue of (E) different of λ1. A
such δ exists because λ1 is isolated in the spectrum. Then, the variational
characterization (3.1) of λ1 and Lemma 2.2 yield

Deg[Ap − λG;Bε(0), 0] = 1, (3.3)

when λ ∈ (λ1−δ, λ1). To evaluate (3.2) for λ ∈ (λ1, λ1 +δ), we use a similar
argument developed in [11] (see also [12]). Fix a number t0 > 0 and define
a continuously differentiable function h : IR −→ IR by

h(t) =

{

0 for t ≤ t0
a(t − 2t0) for t ≥ 3t0,

where a > δ
λ1

and h is positive and strictly convex in (t0, 3t0). Now, define
an auxiliary functional

Φλ(u) = 1
p
‖∇u‖p

p −
λ
p

∫

Ω m(x)|u|pdx + h(1
p
‖∇u‖p

p)

= 1
p
〈Apu, u〉 − λ

p
〈Gu, u〉 + h( 1

p
‖∇u‖p

p).

Then Φλ is continuously Frêchet differentiable. It is not difficult to show
that any critical point w ∈ W 1,p(Ω) of Φλ solves the equation

Apw −
λ

1 + h′(1
p
‖∇w‖p

p)
Gw = 0.
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However, the only nontrivial critical points of Φλ occur if

h′

(

1

p
‖∇u‖p

p

)

=
λ

λ1
− 1. (3.4)

Because λ 6= λ1 and by definition of h, we must have 1
p
‖∇u‖p

p ∈ (t0, 3t0).

Due to the simplicity of λ1, either u0 = ∓αu1 for some α ∈ IR+
∗ , where u1 > 0

is the principal eigenfunction normalized by ‖u1‖1,p = 1 corresponding to
λ1. Thus, for λ ∈ (λ1, λ1 + δ), the derivative Φ′

λ possesses precisely three
isolated critical points −αu1, 0, αu1 .
Now, to complete the proof, it suffices to prove that these points are local
minimums of Φλ, so that we can apply Lemma 2.1. For this, we argue by
variational method. We claim that:
(C1) Φλ is weakly lower semicontinuous.
(C2) Φλ is coercive, i.e.

lim
‖u‖1,p→+∞

‖Φλ(u)‖1,p = ∞.

Indeed, for (C1) let due to the definition of un ⇀ u in W 1,p(Ω). Thus,
Lemma 2.3 implies

〈Gun, un〉 −→ 〈Gu, u〉. (3.5)

Thanks to the weakly lower semicontinuity of the norm, we obtain

‖∇u‖p ≤ lim
n→+∞

‖∇un‖p. (3.6)

Using (3.5), (3.6) and the fact that h is increasing in (3t0, ∞), we deduce
that

lim inf
n→∞

Φλ(un) ≥ Φλ(u).

We deal now with (C2), Φλ(u) is coercive otherwise, there exist a sequence
(un)n in W 1,p(Ω) and a constant c > 0 such that limn→∞ ‖un‖1,p = ∞ and
Φλ(un) ≤ c.
Therefore

Φλ(un) = 1
p
〈Apun, un〉 −

λ
p
〈Gun, un〉 + h(1

p
‖∇un‖

p
p)

=
1

p

∫

Ω
|∇un|

p dx −
λ

p

∫

Ω
m(x)|un|

p dx + h(
1

p
‖∇un‖

p
p)

≥ 1+a
p

∫

Ω
|∇un|

p dx −
λ

p

∫

Ω
m(x)|un|

p dx − 2at0.

It follows that

‖∇un‖
p
p −

λ

1 + a

∫

Ω
m(x)|un|

p dx ≤ c + 2at0.
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Since λ1 > λ
1+a

then Lemma 3.1 implies that ‖un‖1,p is bounded which is
contradiction.
Consequently, from (C1) and (C2) and the fact that Φλ is even, there are
precisely two points at which the minimum of Φλ is achieved: −αu1 and
αu1 for some α ∈ IR+

∗ , in view of [3]. The point origin 0 is obviously an
isolated critical point of ”the saddle type”.
From Lemma 2.1, we have

Ind(Φ′
λ,−αu1) = Ind(Φ′

λ, αu1) = 1. (3.7)

Simultaneously, we have
〈Φ′

λ(u), u〉 > 0,

for any ‖u‖1,p = R, with R > 0 large enough. Indeed, it is easy to verify
that

〈Apu, u〉 > λ〈Gu, u〉 and 〈Apu, u〉 > 3t0,

for ‖u‖1,p large enough. Therefore,

〈Φ′
λ(u), u〉 ≥ (λ1 − λ)〈Gu, u〉 + a〈Apu, u〉

≥ −δ
λ1

〈Apu, u〉 + a〈Apu, u〉

≥ (a − δ
λ1

)‖∇u‖p
p.

That is 〈Φ′
λ(u), u〉 → ∞, as ‖u‖1,p → ∞, due to the choice of a and Lemma

3.1.
Lemma 2.2 implies that

Deg[Φ′
λ;BR(0), 0] = 1. (3.8)

We choose R so large such that ‖αu1‖1,p = R, i.e, αu1 ∈ ∂BR(0).
Now, thanks to additivity property of the degree, (3.7) and (3.8), we deduce
that

Deg[L − λG;Bε(0), 0] = −1. (3.9)

On the other hand, it is clear that

〈Apu, u〉 − λ〈Gu, u〉 → 0,

as ‖u‖1,p → 0. Then, by the definition of h, we obtain

Deg[Apu − λG;Bε(0), 0] = Ind(Φ′
λ, 0), (3.10)

for ε > 0 small enough. Which implies from (2.3) and the homotopy invari-
ance principle of the degree, that for ε > 0 small enough,

Deg[Tλ;Bε(0), 0] = Deg[Apu − λG;Bε(0), 0)], (3.11)

for λ ∈ (λ1 − δ, λ1 + δ)\{λ1}. Consequently, we conclude from (3.3), (3.9),
(3.10) and (3.11) that

Deg[Tλ;Bε(0), 0] = 1 for λ ∈ (λ1 − δ, λ1),
EJQTDE, 2004, No. 9, p. 12



Deg[Tλ;Bε(0), 0] = −1 for λ ∈ (λ1, λ1 + δ)

for ε > 0 sufficiently small. The ”jump” of the degree is established and the
proof is completed.

Remark 3.1. We can extend the bifurcation result above to any eigenvalue
λn which is isolated in the spectrum and of odd multiplicity in order to be
able to apply the above argument.
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