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EIGENVALUE PROBLEMS FOR A THREE-POINT

BOUNDARY-VALUE PROBLEM ON A TIME SCALE

ERIC R. KAUFMANN† AND YOUSSEF N. RAFFOUL‡

Abstract. Let T be a time scale such that 0, T ∈ T. We us a cone theo-

retic fixed point theorem to obtain intervals for λ for which the second order

dynamic equation on a time scale,

u∆∇(t) + λa(t)f(u(t)) = 0, t ∈ (0, T ) ∩ T,

u(0) = 0, αu(η) = u(T ),

where η ∈ (0, ρ(T )) ∩ T, and 0 < α < T/η, has a positive solution.

1. Introduction

Stefan Hilger [4] introduced the concept of time scales as a means of unifying

differential and difference calculus. In this paper we obtain eigenvalue intervals

for which a second order multi-point boundary value problem on a time scale has

positive solutions. This work not only carries the works [11], (difference equation),

and [12], (differential equation), to the case of time scales, but also generalizes

some of the results in [1] and [6] as well as presents new results. For a thorough

treatment of the theory of dynamical systems on time scales see the books by

Bohner and Peterson [2] and by Kaymakcalan et. al. [5]. We begin by presenting

some basic definitions, which can be found in [2], concerning time scales.

A time scale T is a closed nonempty subset of R. For t < sup T and r >

inf T, we define the forward jump operator, σ, and the backward jump operator, ρ,

respectively, by

σ(t) = inf{τ ∈ T | τ > t} ∈ T,

ρ(r) = sup{τ ∈ T | τ < r} ∈ T,
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for all t ∈ T. If σ(t) > t, t is said to be right scattered, and if σ(t) = t, t is said to

be right dense, (rd). If ρ(t) < t, t is said to be left scattered, and if ρ(t) = t, t is

said to be left dense, (ld).

For x : T → R and t ∈ T, (assume t is not left scattered if t = sup T), we

define the delta derivative of x(t), x∆(t), to be the number (when it exists), with

the property that, for each ε > 0, there is a neighborhood, U , of t such that

∣

∣x(σ(t)) − x(s) − x∆(t)(σ(t) − s)
∣

∣ ≤ ε|σ(t) − s|,

for all s ∈ U .

For x : T → R and t ∈ T, (assume t is not right scattered if t = inf T), we define

the nabla derivative of x(t), x∇(t), to be the number (when it exists), with the

property that, for each ε > 0, there is a neighborhood, U , of t such that

∣

∣x(ρ(t)) − x(s) − x∇(t)(ρ(t) − s)
∣

∣ ≤ ε|ρ(t) − s|,

for all s ∈ U .

Remarks: If T = R then x∆(t) = x∇(t) = x′(t). If T = Z then x∆(t) =

x(t + 1) − x(t) is the forward difference operator while x∇(t) = x(t) − x(t − 1) is

the backward difference operator.

We consider the three-point dynamic equation on a time scale

u∆∇(t) + λa(t)f(u(t)) = 0, t ∈ (0, T ) ∩ T, (1.1)

u(0) = 0, αu(η) = u(T ), (1.2)

where η ∈ (0, ρ(T )) ∩ T, 0 < α < T/η.

Ma [8] used cone theoretic techniques to show the existence of positive solu-

tions to the second order three-point boundary value problem u′′ + a(t)f(u(t)) =

0, u(0) = 0, αu(η) = u(1) where η ∈ (0, 1), 0 < αη < 1. Subsequent works by Ma

[9], Ma [10], and Cao and Ma [3] generalized these results in the case of differential

equations. Recently, Raffoul [12] generalized [8] by considering u′′ +λa(t)f(u(t)) =

0, u(0) = 0, αu(η) = u(1) where η ∈ (0, 1), 0 < αη < 1. In [12], the author consid-

ered combinations (two at a time) of (L1) limx→0
f(x)

x
= ∞, (L2) limx→∞

f(x)
x

=

∞, (L3) limx→0
f(x)

x
= 0, (L4) limx→∞

f(x)
x

= 0, (L5) limx→0
f(x)

x
= l, 0 < l <

EJQTDE, 2004 No. 2, p. 2



∞, (L6) limx→∞
f(x)

x
= L, 0 < L < ∞, and found intervals filled with eigenvalues

λ and showed the existence of positive solutions. Later on, in [11], the above men-

tioned second order three-point value boundary in the discrete case was considered

but only under the assumption that λ = 1 and f is either linear or super-linear.

Anderson [1], and later Kaufmann [6], showed the existence of multiple positive

solutions for the time scale equation (1.1), (1.2) in the case when λ = 1.

Throughout the paper we assume that

(1) f : [0,∞) → [0,∞) is continuous, and

(2) a : (0, T )∩T → [0,∞) is ld-continuous and there exists t0 ∈ (η, T )∩T such

that a(t0) > 0.

In addition we will assume that one of the following conditions holds.

(H1) There are xn → 0 such that f(xn) > 0 for n = 1, 2, . . . .

(H2) f(x) > 0 for x > 0.

In section 2 we present some important lemmas and a fixed point theorem. We

also define an operator whose fixed points are solutions to (1.1), (1.2). In section 3,

we state several theorems giving eigenvalue intervals for the existence of a positive

solution to (1.1), (1.2). In the final section, section 4, we present eigenvalue intervals

and conditions under which there exists two positive solutions of (1.1), (1.2).

2. Preliminaries

We begin this section by stating five preliminary lemmas concerning the bound-

ary value problem,

u∆∇(t) + λy(t) = 0, t ∈ (0, T ) ∩ T, (2.1)

u(0) = 0, αu(η) = u(T ). (2.2)

The proofs of Lemmas 2.1 through 2.5 follow along the lines of the proofs given in

[8] for the continuous case, [11] for the discrete case and [1] for time scales in the

case λ = 1, and will be omitted.
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Lemma 2.1. If αη 6= T then for y ∈ Cld(T, R) the boundary-value problem (2.1),

(2.2) has the unique solution

u(t) = λ

[

−

∫ t

0

(t − s)y(s)∇s −
αt

T − αη

∫ η

0

(η − s)y(s)∇s

+
t

T − αη

∫ T

0

(T − s)y(s)∇s

]

.

Lemma 2.2. If u(0) = 0 and u∆∇ ≤ 0, then u(s)
s

≤ u(t)
t

for all s, t ∈ (0, T ] ∩ T

with t ≤ s.

Lemma 2.3. Let 0 < α < T/η. If y ∈ Cld(T, R) and y ≥ 0 then the solution u of

boundary-value problem (2.1), (2.2) satisfies u(t) ≥ 0 for all t ∈ [0, T ] ∩ T.

Lemma 2.4. Let αη > T . If y ∈ Cld(T, R) and y ≥ 0 then the boundary-value

problem (2.1), (2.2) has no nonnegative solution.

We use the Banach space B = Cld(T, R) with norm ‖u‖ = supt∈[0,T ]∩T
|u(t)|.

Define the operator I : B → B by

Iu(t) = λ

[

−

∫ t

0

(t − s)a(s)f(u(s))∇s −
αt

T − αη

∫ η

0

(η − s)a(s)f(u(s))∇s

+
t

T − αη

∫ T

0

(T − s)a(s)f(u(s))∇s

]

.

The first two terms on the right hand side are non-positive and so

Iu(t) ≤
λT

T − αη

∫ T

0

(T − s)a(s)f(u(s))∇s.

Also, as in [1], [6], and [12] we can show that

Iu(η) ≥
λη

T − αη

∫ T

η

(T − s)a(s)f(u(s))∇s.

To simplify some expression we define the quantities

A ≡
T

T − αη

∫ T

0

(T − s)a(s)∇s (2.3)

and

B ≡
η

T − αη

∫ T

0

(T − s)a(s)∇s (2.4)
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Lemma 2.5. Let 0 < αη < T . If y ∈ Cld(T, [0,∞)), then the unique solution u of

(2.1), (2.2) satisfies

min
t∈[η,T ]∩T

u(t) ≥ γ‖u‖ (2.5)

where

γ = min
{αη

T
,
α(T − η)

T − αη
,
η

T

}

. (2.6)

In view of Lemma 2.5, we define the cone P ⊂ B, by

P = {u ∈ B : u(t) ≥ 0, t ∈ T and min
t∈[η,T ]∩T

u(t) ≥ γ‖u‖}.

From Lemma 2.5 we have I : P → P . Standard arguments show that the operator

I is completely continuous.

We use Theorem 2.6 below, due to Krasnosel’skĭı [7], to obtain fixed points for

the operator I : P → P .

Theorem 2.6. Let B be a Banach space and let P ⊂ B be a cone. Assume Ω1, Ω2

are bounded open balls of B such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Suppose that

I : P ∩ (Ω2 \ Ω1) → P

is a completely continuous operator such that, either

(1) ‖Iu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Iu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or

(2) ‖Iu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Iu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then I has a fixed point in P ∩ (Ω2 \ Ω1).

We will use the following lemma in the proofs of our main theorems.

Lemma 2.7. Assume that there exist two positive numbers a and b such that a 6= b,

max
0≤x≤a

f(x) ≤
a

λA
, (2.7)

and

min
γb≤x≤b

f(x) ≥
b

λB
. (2.8)

Then there exists y ∈ Ω which is a fixed point of I and satisfies min{a, b} ≤ ‖y‖ ≤

max{a, b}.
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Proof. Let Ωξ = {w ∈ B : ‖w‖ < ξ}. Assume that a < b. Then, for any y ∈ B

which satisfies ‖y‖ = a, in view of (2.7), we have

(Iu)(t) ≤ λ
T

∫ T

0 (T − s)a(s)∇s

T − αη
·

a

λA
≤ λA ·

a

λA
= a. (2.9)

That is, ‖Iy‖ ≤ ‖y‖ for y ∈ ∂Ωa. For any y ∈ B which satisfies ‖y‖ = b, we have

(Iy)(η) ≥ λ
η

∫ T

η
(T − s)a(s)∇s

T − αη
·

b

λB
≥ λB ·

b

λB
. (2.10)

That is, we have ‖Iy‖ ≥ ‖y‖ for y ∈ ∂Ωb. In view of Theorem 2.6, there exists

y ∈ B which satisfies a ≤ ‖y‖ ≤ b such that Iy = y. If a > b, (2.9) is replaced by

(Ty)(t) ≥ b in view of (2.8), and (2.10) is replaced by (Iy)(t) ≤ a in view of (2.7).

The same conclusion then follows. The proof is complete. �

3. Positive Solutions

Before we state and prove our main theorems we define two functions q and p by

q(r) =
r

A max0≤x≤r f(x)
, (3.1)

where A is defined in (2.3), and

p(r) =
r

B minγr≤x≤r f(x)
, (3.2)

where B is defined in (2.4). The function q is well defined if (H1) holds. Further-

more, in this case, q : [0,∞) → [0,∞) is continuous. The function p is well defined

if (H2) holds and, in this case, p : [0,∞) → [0,∞) is continuous.

Theorem 3.1. Suppose either

I. (H1), limx→0
f(x)

x
= ∞, and limr→+∞ max0≤x≤r

f(x)
r

= 0 hold, or

II. (H2), limx→0
f(x)

x
= 0, and limr→+∞ minγr≤x≤r

f(x)
r

= ∞ hold.

Then for any λ ∈ (0, +∞), there exists at least one positive solution of (1.1), (1.2).

Proof. Suppose (H1), limx→0
f(x)

x
= ∞, and limr→+∞ max0≤x≤r

f(x)
r

= 0 hold.

Consider q : [0, +∞) → [0, +∞) as defined in (3.1). Then limr→0 q(r) = 0 and

limr→∞ q(r) = +∞. Let λ ∈ (0,∞). By the intermediate value theorem, there
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exists an a such that q(a) = λ. That is, a/(A max0≤x≤a f(x)) = λ. Consequently,

max0≤x≤a f(x) = a/(λA). Thus we have f(x) ≤ a/(λA) for all x ∈ [0, a].

Since limx→0
f(x)

x
= ∞, there exists a b ∈ (0, a) such that f(x)

x
≥ 1/(λγB) for

all x ∈ (0, b). In particular, f(x) ≥ b/(λB) for all x ∈ [γb, b]. An application of

Lemma 2.7 leads to a positive solution of (1.1), (1.2).

Now suppose that (H2), limx→0
f(x)

x
= 0, and limx→+∞ minγr≤x≤r

f(x)
r

= ∞

hold. Consider p : (0, +∞) → (0, +∞) as defined in (3.2). Since limx→0
f(x)

x
= 0

and limr→+∞ minγr≤x≤r
f(x)

r
= ∞, we have limr→0 p(r) = +∞ and limr→+∞ p(r) =

0. Let λ ∈ (0, +∞). By the intermediate value theorem, there exists a b such that

p(b) = λ. That is, b/(B minγb≤x≤b f(x)) = λ. And so, f(x) ≥ b/(λB) for all

x ∈ [γb, b]. Since limx→0
f(x)

x
= 0, there exists an a < b such that f(x)

x
≤ 1/(λA)

for all x ∈ (0, a]. Thus, f(x) ≤ a/(λA) for all x ∈ (0, a]. Again, an application of

Lemma 2.7 yields a positive solution of (1.1), (1.2). �

The proofs of the remaining theorems in this section are similar to the proof of

Theorem 3.1. We will present only sketches of their proofs.

Theorem 3.2. Suppose (H1), limx→0
f(x)

x
= ∞, and limx→+∞ max0≤x≤r

f(x)
r

= L

hold. Then for any λ ∈ (0, 1
AL

), there exists at least one positive solution of (1.1),

(1.2).

Proof. Consider q : [0, +∞) → [0, +∞) as defined in (3.1). Since limx→0
f(x)

x
= ∞

and limx→+∞ max0≤x≤r
f(x)

r
= L we have limr→0 q(r) = 0 and limr→∞ q(r) =

1/(AL). Let λ ∈ (0, 1
AL

) and let a be such that q(a) = λ. Then, f(x) ≤ a/(λA).

Since limx→0
f(x)

x
= ∞, there exists a b ∈ (0, a) such that f(x)

x
≥ 1/(λγB).

And so for all x ∈ (γb, b) we have f(x) ≥ b/(λB). Apply Lemma 2.7 to get the

result. �

Theorem 3.3. Suppose (H2), limr→0 minγr≤x≤r
f(x)

r
= `, and limx→+∞

f(x)
x

= ∞

hold. Then for any λ ∈ (0, 1
B`

), there exists at least one positive solution of (1.1),

(1.2).

Proof. Consider p : [0, +∞) → [0, +∞) as defined in (3.2). By limx→+∞
f(x)

x
= ∞

we have limr→+∞ p(r) = 0. By limr→0 minγr≤x≤r
f(x)

r
= ` we have limr→0 p(r) =
EJQTDE, 2004 No. 2, p. 7



1
B`

. Let λ ∈ (0, 1/(B`)) and let b be such that p(b) = λ. Then, f(x) ≥ a/(λB) for

all x ∈ [γb, b].

Since limx→+∞
f(x)

x
= 0 there exists a a > b such that f(x)

x
≤ 1/(λA) for all

x > a. Let δ = max0≤x≤a f(x). Then f(x) ≤ a1/(λA) for all x ∈ [0, a1] where

a1 > a and a1 ≥ λδA. Apply Lemma 2.7 to get the result. �

Theorem 3.4. Suppose (H1), limx→0
f(x)

x
= 0, and limx→+∞ max0≤x≤r

f(x)
r

= L

hold. Then for any λ ∈ ( 1
AL

, +∞), there exists at least one positive solution of

(1.1), (1.2).

Proof. Again we use q as given in (3.1). Since limx→0
f(x)

x
= 0, we have q(r) → ∞

as r → 0 and by limx→+∞ max0≤x≤r
f(x)

r
= L we have q(r) → 1/(AL) as r → ∞.

Pick λ ∈ ( 1
AL

, +∞). As in preceding proofs there exists a and b such that 0 < b < a,

f(x) ≤ a/(λA) for all x ∈ [0, a], and f(x) ≥ b/(λB) for all x ∈ [γb, b]. The result

follows by Lemma 2.7. �

Theorem 3.5. Suppose (H2), limx→+∞
f(x)

x
= 0, and limr→0 minγr≤x≤r

f(x)
r

= `

hold. Then for any λ ∈ ( 1
B`

, +∞), there exists at least one positive solution of

(1.1), (1.2).

Proof. Again we use p as given in (3.2). By limx→+∞
f(x)

x
= 0, we have p(r) → ∞

as r → ∞ and by limr→0 minγr≤x≤r
f(x)

r
= ` we have p(r) → 1/(B`) as r → 0. Pick

λ ∈ ( 1
B`

, +∞). As in preceding proofs there exists a and b such that 0 < a < b,

f(x) ≥ b/(λB) for all x ∈ [γb, b], and f(x) ≤ a/(λA) for all x ∈ [0, a]. The result

follows by Lemma 2.7. �

4. Multiple Positive Solutions

In this section we determine intervals over which the eigenvalue problem (1.1),

(1.2) has at least two positive solutions. To the authors’ knowledge this is the first

such criterion for the existence of at least two positive solutions.

Theorem 4.1. Suppose (H1), limx→0
f(x)

x
= ∞ and limx→+∞

f(x)
x

= ∞ hold.

Then for any λ ∈ (0, λ∗), the boundary value problem (1.1), (1.2) has at least two
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positive solutions, where

λ∗ =
1

A
sup
r>0

r

max0≤x≤r f(x)
,

and A is defined by (2.3).

Proof. Let q(r) = r/(A max0≤x≤r f(x)). In view of (H1), we have that q ∈

C((0,∞), (0,∞)). Furthermore limr→0 q(r) = limr→∞ q(r) = 0. Thus, there exists

r0 > 0 such that q(r0) = maxr>0 q(r) = λ∗. For any λ ∈ (0, λ∗), by the intermediate

value theorem, there exist a1 ∈ (0, r0) and a2 ∈ (r0,∞) such that q(a1) = q(a2) = λ.

Thus, we have f(x) ≤ a1/(λA) for x ∈ [0, a1] and f(x) ≤ a2/(λA) for x ∈ [0, a2].

Since limx→0
f(x)

x
= ∞ and limx→+∞

f(x)
x

= ∞, we see that there exist b1 ∈

(0, a1) and b2 ∈ (a2,∞) such that f(x)/x ≥ 1/(λγB) for x ∈ (0, b1] ∪ [b2γ,∞).

That is, f(x) ≥ b1/(λB) for x ∈ [b1γ, b1] and f(x) ≥ b2/(λB) for x ∈ [b2γ, b2]. An

application of Lemma 2.7 leads to two distinct solutions of equation (1.1), (1.2). �

Theorem 4.2. Suppose (H2), limx→0
f(x)

x
= 0 and limx→+∞

f(x)
x

= 0 hold. Then

for any λ > λ∗∗, the boundary value problem (1.1), (1.2) has at least two positive

solutions, where

λ∗∗ =
1

B
inf
r>0

r

minγr≤x≤r f(x)
,

and B is defined by (2.4).

Proof. Let p(r) = r/(B minγr≤x≤r f(x)). Clearly, p ∈ C((0,∞), (0,∞)). From

limx→0
f(x)

x
= 0 and limx→+∞

f(x)
x

= 0, we see that limr→0 p(r) = limr→∞ p(r) =

∞. Thus, there exists r0 > 0 such that p(r0) = minr>0 p(r) = λ∗∗. For any λ > λ∗∗,

there exist b1 ∈ (0, r0) and b2 ∈ (r0,∞) such that p(b1) = p(b2) = λ. Thus, we have

f(x) ≥ b1/(λB) for x ∈ [γb1, b1] and f(x) ≥ b2/(λB) for x ∈ [γb2, b2].

Since limx→0
f(x)

x
= 0, we see that f(0) = 0 and that there exists a1 ∈ (0, b1) such

that f(x)/x ≤ 1/(λA) for x ∈ (0, a1]. Thus, we have f(x) ≤ a1/(λA). In view of

limx→+∞
f(x)

x
= 0, we see that there exists a ∈ (b2,∞) such that f(x)/x ≤ 1/(λA)

for x ∈ [a,∞). Let δ = max0≤x≤a f(x). Then we have f(x) ≤ a2/(λA) for

x ∈ [0, a2], where a2 > a and a2 ≥ λδA. An application of Lemma 2.7 leads to two

distinct solutions of (1.1), (1.2). �
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