![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Stochastic Weak Attractor for a Dissipative Euler Equation
|
Hakima Bessaih, University Dini, Pisa |
Abstract
In this paper a nonautonomous dynamical system is considered, a stochastic
one that is obtained from the dissipative Euler equation subject to a
stochastic perturbation, an additive noise. Absorbing sets have been
defined as sets that depend on time and attracts from $-infty$.
A stochastic weak attractor is constructed in phase space with respect
to two metrics and is compact in the lower one.
|
Full text: PDF
Pages: 1-16
Published on: November 29, 1999
|
Bibliography
- C. Bardos, Existence et unicité de la solution
de l'équation d'Euler en dimensione deux,
J. Math. Anal. Appl, 40, 1972, 769-780.
Math. Review 48 #11813
- H. Bessaih and F. Flandoli, 2-D Euler equations pertubed
by noise, Nonlinear Diff. Eq .Appl, Vol 6,
Issue 1, 1999, 35-54.
Math. Review CMP 1 674 779
- H. Bessaih and F. Flandoli, Weak attractor for a dissipative
Euler equation, Submitted.
Math. Review number not available.
- H. Crauel and F. Flandoli, Attractors for random dynamical systems,
Prob. Theo. Relat. Fields, 100, 1994, 365-393.
Math. Review 95k:58092
- H. Crauel, A. Debusshe and F. Flandoli, Random attractors, J.
Dyn. Diff. Eq, 1995.
Math. Review 98c:60066
- C. Castaing and M. Valadier, Convex analysis and measurable
multifunctions, Lecture Notes in Mathematics 580, Springer-Verlag,
Berlin, 1977.
Math. Review 57 #7169
- V. Chepyshov and M.I. Vishik, Nonautonomous evolution
equations and their attractors, Russian J. Math. Phys, 1,
1993, 165-190.
Math. Review 93m:34094
- G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite
Dimensions, Cambridge University Press, 1992.
Math. Review 95g:60073
- F. Flandoli and B. Schmalfuss, Weak solutions and attractors
for the 3-dimensional Navier-Stokes equations with
nonregular force, J. Dyn. Diff. Eq., 11, 1999, 355-398.
Math. Review 1 695 250
- G. Gallavotti, Ipotesi per uua introduzione alla Meccanica
Dei Fluidi, Quaderni del Consiglio Nazionale delle Ricerche,
Gruppo Nazionale di Fisica matematica , no 52, 1996.
Math. Review number not available
- J. L. Lions, Équations Differentielles Opérationnelles
et problèmes aux limites, Springer-Verlag, Berlin, 1961.
Math. Review 27 #3935
- P.L. Lions, Mathematical Topics in Fluid Mechanics Vol. 1
Incompressible Models, Oxford Sci. Publ, Oxford, 1996.
Math. Review 98b:76001
- G. Sell, Global attractors for the 3D Navier-Stokes Equations,
J. Dyn. Diff. Eq, 8, 1996.
Math. Review 98e:35127
- R. Temam, Navier-Stokes Equations, North-Holland, 1984.
Math. Review 86m:76003
- R. Temam, Infinite Dimensional Dynamical Systems in Mechanics
and Physics, Applied Mathematical Sciences,
Vol 68, Springer-Verlag, New York, 1988.
Math. Review 89m:58056
- M. J. Vishik and A. V. Fursikov, Mathematical Problems of Statistical
Hydromechanics, Kluwer, Dordrecht, 1980.
Math. Review 83e:35098
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|