![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Self-normalized Large Deviations for Markov Chains
|
Mathieu Faure, Universit'e de Marne La Vall'ee |
Abstract
We prove a self-normalized large deviation
principle for sums of Banach space valued functions of a Markov chain. Self-normalization applies to situations for which a full large deviation principle is not available. We follow the lead of Dembo and Shao [DemSha98b] who state partial large deviations principles for independent and identically
distributed random sequences.
|
Full text: PDF
Pages: 1-31
Published on: November 13, 2002
|
Bibliography
- A. De Acosta (1985).
Upper bounds for large deviations of dependent random vectors,
Z. Wahrscheinlichkeitstheorie 69, 551-565,
Math. Review 87f:60036
- A. De Acosta (1988).
Large deviations for vector-valued functionnals of a Markov chain: lower bounds,
Ann. Prob. 16, 925-960,
Math. Review 89i:60060
- A. De Acosta (1990).
Large deviations for empirical measures of Markov chains,
J. Theoretical Prob. 3, 395-431,
Math. Review 91j:60051
- A. De Acosta and P. Ney (1998).
Large deviations lower bounds for arbitrary additive functionnals of a Markov chain,
Ann. Prob. 26, 1660-1682,
Math. Review 2000a:60039
- J.G. Attali (1999).
1. M'ethodes de stabilité pour des chaînes de Markov non fellériennes, 2. Sur quelques autres problèmes issus des réseaux de neurones, thèse,
Université Paris 1 ,
- R. Bahadur and S. Zabell (1979).
Large deviations for the sample mean in general vector spaces,
Ann. Prob. 7, 587-621,
Math. Review 80i:60031
- J.R. Baxter, N.C. Jain and S.R.S. Varadhan (1991).
Some familiar examples for which the large deviation principle does not hold,
Commun. Pure Appl. Math. 911-923,
Math. Review 93d:60038
- B. Bercu F. Gamboa and A. Rouault (1997).
Large deviations for quadratic forms of stationary Gaussian processes,
Stoch. Proc. and their Appl.
71,
75-90,
Math. Review 97c:60072
- W. Bryc and A. Dembo (1997).
Large deviations for quadratic functionals of Gaussian processes,
J. of Theoretical Prob. 10,
307-322,
Math. Review 98g:60056
- A. Dembo and Q.M. Shao (1998).
Self-normalized large deviations and LILs,
Stoch. processes and their applications. 75,
51-65,
Math. Review 99i:60053
- A. Dembo and Q.M. Shao (1998).
Self-normalized large deviations in vector spaces,
Progress in probability proceeding Oberwolfach 43,
27-32,
Math. Review 99j:60036
- A. Dembo and O. Zeitouni (1998).
Large deviations techniques and applications,
Springer ,
Math. Review 99d:60030
- I.H. Dinwoodie (1993).
Identifying a large deviations rate function,
Ann. Prob. 23,
216-231,
Math. Review 94a:60037
- I.H. Dinwoodie and S.L. Zabell (1992).
Large deviations for exchangeable random vectors,
Ann. Prob. 3,
1147-1166,
Math. Review 93g:60059
- M.D. Donsker and S.R.S. Varadhan (1975).
Asymptotic evaluation of certain Markov process expectations for large time I,
Commun. Pure Appl. Math.
28,
1-47,
Math. Review 52:6883
- M.D. Donsker and S.R.S. Varadhan (1976).
Asymptotic evaluation of certain Markov process expectations for large time III,
Commun. Pure Appl. Math.
29,
389-461,
Math. Review 55:1492
- M. Duflo (1997).
Random Iterative Models,
Springer ,
Math. Review 98m:62239
- P. Dupuis and R.S. Ellis (1997).
A weak convergence approach to the theory of large deviations,
Wiley ,
Math. Review 1 431 744.
- X.He and Q.M Shao (1996).
Bahadur efficiency and robustness of Studentized score tests,
Ann. inst. Statist. Math.
48,
295-314,
Math. Review 97m:62016
- N.C. Jain (1990).
Large deviation lower bounds for additive functionals of Markov processes:
discrete time, non compact case,
Ann. probability
18,
1071-1098,
Math. Review 91g:60037
- R.S. Liptser O.V. Gulinskii S.V. Lototskii (1994).
Large deviations for unbounded additive functionnals of a
Markov process with discrete time (non compact case),
J. Appl. Math. Stoch. Anal.
7 (3),
423-436,
Math. Review 96e:60045
- P.Ney and E.Nummelin (1987).
Markov aditive processes(ii): Large deviations,
Ann. Prob.
15,
593-609,
Math. Review 88h:60057
- Q.M. Shao (1997).
Self normalized large deviations,
Ann. Prob.
25,
225-328,
Math. Review 98b:60056
- J.Worms (1999).
Moderate large deviations for stable Markov chains and regression models,
Electronic journal of Probability.
4,
1-28,
Math. Review 2000b:60073
- J.Worms (2000).
Principes de grandes déviations modérés pour des martingales et applications statistiques, thèse,
Université de Marne-la-Vallée, France ,
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|