![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Jason Ross Schweinsberg, University of California, San Diego |
Abstract
We consider a model of a population of fixed size N in which each individual gets replaced at rate one and each individual experiences a mutation at rate μ. We calculate the asymptotic distribution of the time that it takes before there is an individual in the population with m mutations. Several different behaviors are possible, depending on how μ changes with N. These results have applications to the problem of determining the waiting time for regulatory sequences to appear and to models of cancer development.
|
Full text: PDF
Pages: 1442-1478
Published on: August 28, 2008
|
Bibliography
- P. Armitage. Multistage models of carcinogenesis. Environmental Health Prespectives 63 (1985), 195-201. Math. Review number not available.
- P. Armitage and R. Doll. The age distribution of cancer and a multi-stage theory of carcinogenesis. Brit. J. Cancer. 8 (1954), 1-12. Math. Review number not available.
- P. Armitage and R. Doll. A two-stage theory of carcinogenesis in relation to the age distribution of human cancer. Brit. J. Cancer 11 (1957), 161-169. Math. Review number not available.
- R. Arratia, L. Goldstein, and L. Gordon. Two moments suffice for Poisson approximations: the Chen-Stein method. Ann. Probab. 17 (1989), 9-25. Math. Review 90b:60021.
- N. Beerenwinkel, T. Antel, D. Dingli, A. Traulsen, K.W. Kinsler, V.E. Velculescu, B. Vogelstein, and M.A. Nowak. Genetic progression and the waiting time to cancer. PLoS Comput. Biol. 3 , no. 11 (2007), 2239-2246. Math. Review number not available.
- P. Calabrese, J.P. Mecklin, H.J. Järvinen, L.A. Aaltonen, S. Tavaré, and D. Shibata. Numbers of mutations to different types of colorectal cancer. BMC Cancer 5 (2005), 126. Math. Review number not available.
- R. Durrett. Stochastic Calculus: A Practical Introduction (1996) CRC Press. Math. Review 97k:60148.
- R. Durrett and D. Schmidt. Waiting for regulatory sequences to appear. Ann. Appl. Probab. 17 (2007), 1-32. Math. Review 2007j:92034.
- R. Durrett and D. Schmidt. Waiting for two mutations: with applications to regulatory sequence evolution and the limits of Darwinian selection. Preprint (2007). Math. Review number not available.
- R. Durrett, D. Schmidt, and J. Schweinsberg. A waiting time problem arising from the study of multi-stage carcinogenesis. Preprint (2007) arXiv:0707:2057. Math. Review number not available.
- S.N. Ethier and T.G. Kurtz. Markov Processes: Characterization and Convergence (1986) Wiley. Math. Review 88a:60130.
- J.C. Fisher and J.H. Holloman. A hypothesis for the origin of cancer foci. Cancer 4 (1951), 916-918. Math. Review number not available.
- D.A. Freedman and W.C. Navidi. Multistage models for carcinogenesis. Environmental Health Perspectives 81 (1989), 169-188. Math. Review number not available.
- T.E. Harris. The Theory of Branching Processes (1963) Springer-Verlag. Math. Review Math. Review 29 #664.
- H.W. Hethcote and A.G. Knudson. Model for the incidence of embryonal cancers: application to retinoblastoma. Proc. Natl. Acad. Sci. USA 75 (1978), 2453-2457. Math. Review number not available.
- Y. Iwasa, F. Michor, N.L. Komarova, and M.A. Nowak. Population genetics of tumor suppressor genes. J. Theor. Biol. 233 (2005), 15-23. Math. Review number not available.
- Y. Iwasa, F. Michor, and M.A. Nowak. Stochastic tunnels in evolutionary dynamics. Genetics 166 (2004), 1571-1579. Math. Review number not available.
- N.L. Komarova, A. Sengupta, and M.A. Nowak. Mutation-selection networks of cancer initiation: tumor suppressor genes and chromosomal instability. J. Theor. Biol. 223 (2003), 433-450. Math. Review number not available.
- A.G. Knudson. Mutation and cancer: statistical study of retinoblastoma.
Proc. Natl. Acad. Sci. USA 68 (1971), 820-823. Math. Review number not available.
- A.G. Knudson. Two genetic hits (more or less) to cancer. Nat. Rev. Cancer 1 (2001), 157-162. Math. Review number not available.
- A.N. Kolmorogov. On the solution of a problem in biology. Izv. NII Mat. Mekh. Tomsk. Univ. 2 (1938), 7-12. Math. Review number not available.
- E.G. Luebeck and S.H. Moolgavkar. Multistage carcinogenesis and the incidence of colorectal cancer. Proc. Natl. Acad. Sci. USA 99 (2002), 15095-15100. Math. Review number not available.
- S.H. Moolgavkar, A. Dewanji, and D.J. Venzon. A stochastic two-stage model for cancer risk assessment. I. The hazard function and the probability of tumor. Risk Analysis 8 (1988), 383-392. Math. Review number not available.
- S.H. Moolgavkar and A.G. Knudson. Mutation and cancer: a model for human carcinogenesis. J. Natl. Cancer Inst. 66 (1981), 1037-1052. Math. Review number not available.
- S.H. Moolgavkar and G. Luebeck. Two-event model for carcinogenesis: biological, mathematical, and statistical considerations. Risk Analysis 10 (1990), 323-341. Math. Review number not available.
- S.H. Moolgavkar and E.G. Luebeck. Multistage carcinogenesis: population-based model for colon cancer. J. Natl. Cancer Inst. 18 (1992), 610-618. Math. Review number not available.
- P.A.P. Moran. Random processes in genetics. Proc. Cambridge Philos. Soc. 54 (1958), 60-71. Math. Review 23 #B1034.
- H.J. Muller. Radiation damage to the genetic material. In Science in Progress, Seventh Series, G.A. Baitsell, ed. (1951) Yale University Press, pp. 93-165. Math. Review number not available.
- C.O. Nordling. A new theory on cancer-inducing mechanism. Brit. J. Cancer 7 (1953), 68-72. Math. Review number not available.
- M.A. Nowak. Evolutionary Dynamics: Exploring the Equations of Life (2006) Harvard University Press. Math. Review number not available.
- T. Okamoto. Multi-stop carcinogenesis model for adult T-cell leukemia. Rinsho Ketsueki 31 (1990), 569-571. Math. Review number not available.
- T. Sjöblom et. al. The consensus coding sequences of human breast and colorectal cancers. Science 314 (2006), 268-274. Math. Review number not available.
- D. Wodarz and N.L. Komarova. Computational Biology of Cancer: Lecture Notes and Mathematical Modeling (2005) World Scientific. Math. Review number not available.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|