|
|
|
| | | | | |
|
|
|
|
|
Approximation at First and Second Order of $m$-order Integrals of the Fractional Brownian Motion and of Certain Semimartingales
|
Mihai Gradinaru, Institut de Math'ematiques 'Elie Cartan, Universit'e Henri Poincar'e Ivan Nourdin, Institut de Math'ematiques 'Elie Cartan, Universit'e Henri Poincar'e |
Abstract
Let X be the fractional Brownian motion of any Hurst index H in (0,1)
(resp. a semimartingale) and set alpha=H (resp. alpha=1/2).
If Y is a continuous process and if m is a positive integer, we study the
existence of the limit, as epsilon tends to 0, of the approximations
Iepsilon(Y,X)
:={int_0^t Ys
((Xs+epsilon-Xs)/(epsilon)alpha)mds, t>=0}
of m-order integral of Y with respect to X. For these two choices of X,
we prove that the limits are almost sure, uniformly on each compact interval,
and are in terms of the m-th moment of the Gaussian standard random variable.
In particular, if m is an odd integer, the limit equals to zero. In this case, the
convergence in distribution, as epsilon tends to 0, of
(epsilon)-½Iepsilon(1,X)
is studied. We prove that the limit is a Brownian motion when
X is the fractional Brownian motion of index H in (0,1/2], and it is in
term of a two dimensional standard Brownian motion when X is a semimartingale.
|
Full text: PDF
Pages: 1-26
Published on: October 30, 2003
|
Bibliography
-
Alòs, E., Mazet, O., Nualart, D. (2000),
Stochastic calculus with respect to fractional Brownian motion with Hurst
parameter lesser than ½,
Stoch. Proc. Appl., 86, 121-139
MR1741199 (2000m:60059)
-
Alòs, E., León, J.A., Nualart, D. (2001)
Stratonovich stochastic calculus for fractional Brownian motion with Hurst
parameter lesser than ½,
Taiwanese J. Math, 5, 609-632
MR1849782 (2002g:60081)
-
Cheredito, P., Nualart, D. (2003)
Symmetric integration with respect to fractional Brownian motion
Preprint Barcelona
-
Coutin, L., Qian, Z. (2000)
Stochastic differential equations for fractional Brownian motion,
C. R. Acad. Sci. Paris, 330, Serie I, 1-6
MR1780221 (2001d:60038)
-
Föllmer, H. (1981)
Calcul d'Itô sans probabilités,
Séminaire de Probabilités XV 1979/80,
Lect. Notes in Math. 850, 143-150,
Springer-Verlag.
MR0622559 (82j:60098)
-
Giraitis, L., Surgailis, D.,(1985)
CLT and other limit theorems for functionals of Gaussian processes,
Z. Wahrsch. verw. Gebiete, 70, 191-212.
MR0799146 (86j:60067)
-
Gradinaru, M., Russo, F., Vallois, P., (2001)
Generalized covariations, local time and Stratonovich Itô's formula
for fractional Brownian motion with Hurst index H<=1/4,
To appear in Ann. Probab., 31.
-
Gradinaru, M., Nourdin, I., Russo, F., Vallois, P. (2002)
m-order integrals and Itô's formula for non-semimartingale processes; the case of a fractional Brownian motion with any Hurst index,
Preprint IECN 2002-48
-
Guyon, X., León, J. (1989)
Convergence en loi des H-variations d'un processus gaussien stationnaire sur R,
Ann. Inst. Henri Poincaré, 25, 265-282.
MR1023952 (91d:60053)
-
Istas, J., Lang, G. (1997)
Quadratic variations and estimation of the local H"older index of a Gaussian process, Ann. Inst. Henri Poincaré, 33, 407-436.
MR1465796 (98e:60057)
-
Itô, K. (1951)
Multiple Wiener integral, J. Math. Soc. Japan 3, 157-169.
MR0044064 (13,364a)
-
Jakubowski, A., Mémin, J., Pagès, G. (1989)
Convergence en loi des suites d'intégrales stochastiques sur l'espace D1 de Skorokhod,
Probab. Theory Related Fields, 81, 111-137.
MR0981569 (90e:60065)
-
Nualart, D. (1995)
The Malliavin calculus and related topics,
Springer, Berlin Heidelber New-York
MR1344217 (96k:60130)
-
Nualart, D., Peccati, G. (2003)
Convergence in law of multiple stochastic integrals, Preprint Barcelona.
-
Revuz, D., Yor, M. (1994)
Continuous martingales and Brownian motion,
2nd edition, Springer-Verlag
MR1303781 (95h:60072)
-
Rogers, L.C.G. (1997)
Arbitrage with fractional Brownian motion,
Math. Finance, 7, 95-105
MR1434408 (98b:90014)
-
Russo, F., Vallois, P. (1996)
Itô formula for C1-functions of semimartingales,
Probab. Theory Relat. Fields 104, 27-41
MR1367665 (96m:60125)
-
Taqqu, M.S. (1977)
Law of the iterated logarithm for sums of non-linear functions of Gaussian
variables that exibit a long range dependence,
Z. Wahrsch. verw. Gebiete 40, 203-238
MR0471045 (57 #10786)
-
Taqqu, M.S. (1979)
Convergence of integrated processes of arbitrary Hermite rank,
Z. Wahrsch. verw. Gebiete 50, 53-83
MR0550123 (81i:60020)
-
Zähle, M. (1998)
Integration with respect to fractal functions and stochastic calculus I.,
Probab. Theory Relat. Fields 111, 333-374
MR1640795 (99j:60073)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|