 |
|
|
| | | | | |
|
|
|
|
|
Diffusion in Long-Range Correlated Ornstein-Uhlenbeck Flows
|
Albert Fannjiang, University of California, Davis Tomasz Komorowski, UMCS |
Abstract
We study a diffusion process with a
molecular diffusion and random Markovian-Gaussian drift
for which the usual (spatial) Peclet number is infinite.
We introduce a temporal Peclet number
and we prove that, under the finiteness of the temporal
Peclet number, the laws of diffusions
under the diffusive rescaling converge weakly,
to the law of a Brownian motion.
We also show that the effective diffusivity has a finite, nonzero
limit as the molecular diffusion tends to zero.
|
Full text: PDF
Pages: 1-22
Published on: May 31, 2002
|
Bibliography
-
R. J. Adler (1981), Geometry of Random Fields, Wiley, New York.
Math. Review 82h:60103
-
M. Avellaneda and A.J. Majda (1990),
Mathematical models with exact
renormalization for turbulent transport
Commun. Math. Phys.
131, 381-429.
Math. Review 91f:76035
- P. Billingsley (1968),
Convergence of Probability Measures, Wiley,
New York.
Math. Review
38 #1718
-
G. Da Prato and J. Zabczyk (1996),
Ergodicity for Infinite
Dimensional Systems, Cambridge Univ. Press, Cambridge.
Math. Review 97k:60165
-
A. Fannjiang and T. Komorowski (1999),
Turbulent diffusion in Markovian flows, Ann. Appl.
Prob. 9, 591-610.
Math. Review 2001g:60074
-
A. Fannjiang and T. Komorowski (2002),
Diffusive and non-diffusive
limits of transport in non-mixing flows with power-law spectra.
SIAM J. Appl. Math. 62:3, 909-923.
Math. Review 1 897 728
- A. Fannjiang, T. Komorowski and S.Peszat (2002),
Lagrangian dynamics
for a
passive tracer
in a class of Gaussian Markovian flows.
Stoch. Proc. Appl.
97. 171-198.
Math. Review 1 875 332
- A. Fannjiang and G. Papanicolaou (1996),
Diffusion in turbulence.
Probab. Th. Rel. Fields 105, 279-334.
Math. Review 98d:60156
-
S. Janson (1997),
Gaussian Hilbert Spaces,
Cambridge Univ. Press.
Math. Review 99f:60082
-
T. Komorowski (2000), An
abstract Lagrangian process related to convection-diffusion
of a passive tracer in a Markovian flow,
Bull. Pol. Ac. Sci. 48, 413-427.
Math. Review 2001k:60050
-
L. Koralov (1999),
Transport by time dependent stationary flow.
Comm. Math. Phys. 199:3, 649--681.
Math. Review 2000b:82035
- M. Reed and B. Simon (1978),
Methods of Modern
Mathematical Physics. II, Academic Press, New York.
Math. Review 58 #12429b
- Yu. A. Rozanov (1967),
Stationary Random Processes,
Holden-Day, San Fransisco, Cambridge, London, Amsterdam.
Math. Review 35 #4985
-
L. Wu (1999),
Forward-backward martingale decomposition
and compactness results for additive functionals of stationary
ergodic Markov processes.
Ann. Inst. Henri Poincare 35,
121-141.
Math. Review 2000m:60033
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|