 |
|
|
| | | | | |
|
|
|
|
|
Classes of measures which can be embedded in the Simple Symmetric Random Walk
|
Alexander M.G. Cox, University of Bath Jan K. Obloj, Imperial College London |
Abstract
We characterize the possible distributions of a stopped simple symmetric random walk Xτ, where τ is a stopping time relative to the natural filtration of (Xn). We prove that any probability measure on Z can be achieved as the law of X stopped at a minimal stopping time, but the set of measures obtained under the further assumption that stopped process is a uniformly integrable martingale is a fractal subset of the set of all centered probability measures on Z. This is in sharp contrast to the well-studied Brownian motion setting. We also investigate the discrete counterparts of the Chacon-Walsh (1976) and Azéma-Yor (1979) embeddings and show that they lead to yet smaller sets of achievable measures. Finally, we solve explicitly the Skorokhod embedding problem constructing, for a given measure μ, a minimal stopping time τ which embeds μ and which further is uniformly integrable whenever a uniformly integrable embedding of μ exists.
|
Full text: PDF
Pages: 1203-1228
Published on: July 31, 2008
|
Bibliography
- Azéma, Jacques; Yor, Marc. Une solution simple au problème de Skorokhod. (French) Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78), pp. 90--115, Lecture Notes in Math., 721, Springer, Berlin, 1979. MR0544782 (82c:60073a)
- Barnsley, M. F.; Demko, Stephen. Iterated function systems and the global construction of fractals. Proc. Roy. Soc. London Ser. A 399 (1985), no. 1817, 243--275. MR0799111 (87c:58051)
- Chacon, R. V. Potential processes. Trans. Amer. Math. Soc. 226 (1977), 39--58. MR0501374 (58 #18746)
- Chacon, R. V.; Walsh, J. B. One-dimensional potential embedding. Séminaire de Probabilités, X (Prèmiere partie, Univ. Strasbourg, Strasbourg, année universitaire 1974/1975), pp. 19--23. Lecture Notes in Math., Vol. 511, Springer, Berlin, 1976. MR0445598 (56 #3934)
- Cox, A.M.G.. Extending Chacon-Walsh: Minimality and generalised starting distributions.
Séminaire de Probabilités, XLI, Lecture Notes in Math., 1934, Springer, Berlin, 2008. ISBN:978-3-540-77912-4
- Cox, A. M. G.; Hobson, D. G. Skorokhod embeddings, minimality and non-centred target distributions. Probab. Theory Related Fields 135 (2006), no. 3, 395--414. MR2240692 (2007m:60108)
- Dinges, Hermann. Stopping sequences. Journées de la Sociéte Mathématique de France de Probabilités, Strasbourg, 25 Mai 1973. Séminaire de Probabilitiés, VIII (Univ. Strasbourg, année universitaire 1972--1973), pp. 27--36. Lecture Notes in Math., Vol. 381, Springer, Berlin, 1974. MR0383552 (52 #4433)
- Falconer, Kenneth. Fractal geometry. Mathematical foundations and applications. Second edition. John Wiley & Sons, Inc., Hoboken, NJ, 2003. xxviii+337 pp. ISBN: 0-470-84861-8 MR2118797 (2006b:28001)
- Fujita, Tkahiko. Certain martingales of simple symmetric random walk and their applications. Private Communication (2004)
- Hall, W.J. On the Skorokhod embedding theorem. Tech. Report 33 (1968),
Stanford Univ., Dept. of Stat.
- Jacka, S. D. Doob's inequalities revisited: a maximal $Hsp 1$-embedding. Stochastic Process. Appl. 29 (1988), no. 2, 281--290. MR0958505 (89j:60054)
- Meilijson, Isaac. On the Azéma-Yor stopping time. Seminar on probability, XVII, 225--226, Lecture Notes in Math., 986, Springer, Berlin, 1983. MR0770415 (86d:60052)
- Monroe, Itrel. On embedding right continuous martingales in Brownian motion. Ann. Math. Statist. 43 (1972), 1293--1311. MR0343354 (49 #8096)
- Obój, Jan. The Skorokhod embedding problem and its offspring. Probab. Surv. 1 (2004), 321--390 (electronic). MR2068476 (2006g:60064)
- Obój, Jan; Pistorius, Martijn. An explicit Skorokhod embedding for spectrally negative Lévy processes. J. Theoret. Probab. (2008), to appear, DOI:10.1007/s10959-008-0157-7.
- Obój, Jan; Yor, Marc. An explicit Skorokhod embedding for the age of Brownian excursions and Azéma martingale. Stochastic Process. Appl. 110 (2004), no. 1, 83--110. MR2052138 (2005b:60110)
- Perkins, Edwin. The Cereteli-Davis solution to the $Hsp 1$-embedding problem and an optimal embedding in Brownian motion. Seminar on stochastic processes, 1985 (Gainesville, Fla., 1985), 172--223, Progr. Probab. Statist., 12, Birkhäuser Boston, Boston, MA, 1986. MR0896743 (88k:60085)
- Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion. Third edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1999. xiv+602 pp. ISBN: 3-540-64325-7 MR1725357 (2000h:60050)
- Root, D. H. The existence of certain stopping times on Brownian motion. Ann. Math. Statist. 40 1969 715--718. MR0238394 (38 #6670)
- Rost, Hermann. Darstellung einer Ordnung von Maßen durch Stoppzeiten. (German) Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 15 1970 19--28. MR0281254 (43 #6973)
- Rost, Hermann. Markoff-Ketten bei sich füllenden Löchern im Zustandsraum. (German) Ann. Inst. Fourier (Grenoble) 21 (1971), no. 1, 253--270. MR0299755 (45 #8803)
- Rost, Hermann. The stopping distributions of a Markov Process. Invent. Math. 14 (1971), 1--16. MR0346920 (49 #11641)
- Skorokhod, A. V. Studies in the theory of random processes. Translated from the Russian by Scripta Technica, Inc. Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965 viii+199 pp. MR0185620 (32 #3082b)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|