|
|
|
| | | | | |
|
|
|
|
|
One-Arm Exponent for Critical 2D Percolation
|
Gregory F. Lawler, Duke University and Cornell University Oded Schramm, Microsoft Research Wendelin Werner, Université Paris-Sud and IUF |
Abstract
The probability that the cluster of the origin in critical site
percolation on the triangular grid has diameter larger than R
is proved to decay like R to the power 5/48 as R goes to infinity.
|
Full text: PDF
Pages: 1-13
Published on: November 30, 2001
|
Bibliography
- Lars V. Ahlfors.
Conformal invariants: topics in geometric function theory.
McGraw-Hill Book Co., New York, 1973, MR50 #10211.
McGraw-Hill Series in Higher Mathematics.
- M. Aizenman, B. Duplantier, and A. Aharony.
Path crossing exponents and the external perimeter in 2d percolation.
Phys. Rev. Let., 83 pp. 1359-1362, 1999.
- John L. Cardy.
Critical percolation in finite geometries.
J. Phys. A, 25 no. 4 pp. L201-L206, 1992, MR92m:82048.
- P. Grassberger.
Conductivity exponent and backbone dimension in 2-d percolation.
Physica A, 262 pp. 251, 1999.
- Geoffrey Grimmett.
Percolation.
Springer-Verlag, New York, 1989, MR90j:60109.
- Harry Kesten.
Percolation theory for mathematicians.
Birkhäuser Boston, Mass., 1982, MR84i:60145.
- Harry Kesten.
Scaling relations for $2$D-percolation.
Comm. Math. Phys., 109 no. 1 pp. 109-156, 1987, MR88k:60174.
- H. Kesten, V. Sidoravicius, and Y. Zhang.
Almost all words are seen in critical site percolation on the triangular
lattice.
Electron. J. Probab., 3 paper no. 10, 75 pp. (electronic),
1998, MR99j:60155.
- Gregory F. Lawler.
Intersections of random walks.
Birkhäuser Boston Inc., Boston, MA, 1991, MR92f:60122.
- Gregory F. Lawler.
Loop-erased random walk.
In Perplexing problems in probability, pages 197-217. Birkhäuser
Boston, Boston, MA, 1999, MR2000k:60092.
- G.F. Lawler.
An introduction to the stochastic loewner evolution, 2001.
preprint.
- Gregory F. Lawler, Oded Schramm, and Wendelin
Werner.
Values of Brownian intersection exponents I: Half-plane exponents, 1999,
math.PR/9911084.
To appear in Acta Math.
- Gregory F. Lawler, Oded Schramm, and Wendelin
Werner.
Values of Brownian intersection exponents II: Plane exponents,
2000, math.PR/0003156.
To appear in Acta Math.
- Gregory F. Lawler, Oded Schramm, and Wendelin
Werner.
Values of Brownian intersection exponents III: Two-sided exponents, 2000,
math.PR/0005294.
To appear in Annales Institut Poincaré
- B. Nienhuis.
Coulomb gas description of 2-d critical behaviour.
J. Stat. Phys., 34 pp. 731-761, 1984.
- B. Nienhuis, E. K. Riedel, and M. Schick.
Magnetic exponents of the two-dimensional $q$-states potts model.
J. Phys A, 13 pp. L189-192, 1980.
- M.P.M. Den Nijs.
A relation between the temperature exponents of the eight-vertex and the
$q$-state potts model.
J. Phys. A, 12 pp. 1857-1868, 1979.
- Daniel Revuz and Marc Yor.
Continuous martingales and Brownian motion.
Springer-Verlag, Berlin, 1991, MR92d:60053.
- Steffen Rohde and Oded Schramm.
Basic properties of SLE, 2001, math.PR/0106036.
- Oded Schramm.
Scaling limits of loop-erased random walks and uniform spanning trees.
Israel J. Math., 118 pp. 221-288, 2000, MR1 776 084.
- Oded Schramm.
A percolation formula, 2001, math.PR/0107096.
To appear in ECP.
- Stanislav Smirnov.
Critical percolation in the plane: conformal invariance, Cardy's formula,
scaling limits.
C. R. Acad. Sci. Paris Sér. I Math., 333 no. 3 pp.
239-244, 2001, MR1 851 632.
- Stanislav Smirnov.
In preparation.
- Stanislav Smirnov and Wendelin Werner.
Critical exponents for two-dimensional percolation, 2001.
math.PR/0109120.
To appear in Math. Research Letters.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|