![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Long-range Dependence trough Gamma-mixed Ornstein–Uhlenbeck Process
|
E. Iglói, L. Kossuth University G. Terdik, L. Kossuth University |
Abstract
The limit process of aggregational models---(i) sum
of random coefficient AR(1) processes with independent Brownian motion
(BM) inputs and (ii) sum of AR(1) processes with random coefficients
of Gamma distribution and with input of common BM's,---proves to be Gaussian
and stationary and its transfer function is the mixture of transfer
functions of Ornstein--Uhlenbeck (OU) processes by Gamma distribution.
It is called Gamma-mixed Ornstein--Uhlenbeck process ($Gamma QTR{sf}{MOU}$QTR{sf}{)}.
For independent Poisson alternating $0$--$1$ reward processes with
proper random intensity it is shown that the standardized sum of the processes
converges to the standardized $Gamma QTR{sf}{MOU}$ process. The $Gamma
QTR{sf}{MOU}$ process has various interesting properties and it is a new
candidate for the successful modelling of several Gaussian stationary data
with long-range dependence. Possible applications and problems are also
considered.
|
Full text: PDF
Pages: 1-33
Published on: September 15, 1999
|
Bibliography
-
R. G. Addie, M. Zukerman and T. Neame, Fractal traffic: Measurements, modelling
and performance evaluation, in Proceedings of IEEE Infocom '95, Boston,
MA, U.S.A., April 1995, Vol. 3, 977–984, 1995.
Math. Review number not available.
(Abstract: http://www.sci.usq.edu.au/staff/addie/inf95abs.html)
-
J. Bertoin, Sur une intégrale pour les processus à ?-variation
bornée, Ann. Probab. 17(4), (1989), 1521–1535.
MR91g:60065
-
D. R. Brillinger and R. A. Irizarry, An investigation of the second- and
higher-order spectra of music, Signal Process. 65(2), (1998), 161–179.
Math. Review number not available.
(Full article: http://stat-www.berkeley.edu/users/brill/papers.html)
-
M. Buchanan, Fascinating rhythm, New Sci. 157(2115), (1998).
Math. Review number not available.
(Full article: http://www.newscientist.com/ns/980103/features.html)
-
Ph. Carmona and L. Coutin, Fractional Brownian motion and the Markov property,
Electron. Comm. Probab. 3, (1998), 95–107.
MR1658690
-
Ph. Carmona, L. Coutin and G. Montseny, Applications of a representation
of long memory Gaussian processes. Submitted to Stochastic Process. Appl..
Math. Review number not available.
(Full article:
http://www-sv.cict.fr/lsp/Carmona/prepublications.html)
-
L. Coutin and L. Decreusefond, Stochastic differential equations driven
by a fractional Brownian motion.
Math. Review number not available.
(Full article: http://
www.inf.enst.fr/~decreuse/recherche/recherche.html)
-
D. R. Cox, Long-range dependence, non-linearity and time irreversibility,
J. Time Ser. Anal. 12(4), (1991), 329–335.
MR92f:62123
-
W. Dai and C. C. Heyde, Itô's formula with respect to fractional
Brownian motion and its application, J. Appl. Math. Stochastic Anal. 9(4),
(1996), 439–448.
MR98f:60104
-
D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes,
Springer-Verlag, New York, 1988.
MR90e:60060
-
L. Decreusefond and A. S. Üstünel, Stochastic analysis of the
fractional Brownian motion, Potential Anal. 10(2), (1999), 177–214.
MR1677455
-
C. W. J. Granger, Long memory relationships and the aggregation of dynamic
models, J. Econometrics 14, (1980), 227–238.
MR81m:62165
-
J. M. Hausdorff and C.-K. Peng, Multi-scaled randomness: A possible source
of 1/f noise in biology, Phys. Rev. E 54, (1996), 2154–2157.
Math. Review number not available.
(Full article: http://reylab.bidmc.harvard.edu/publications/peng/1overf/1overf.html)
-
E. Iglói and G. Terdik, Bilinear stochastic systems with fractional
Brownian motion input, Ann. Appl. Probab. 9(1), (1999), 46–77.
MR1682600
-
F. Klingenhöfer and M. Zähle, Ordinary differential equations
with fractal noise, Proc. Amer. Math. Soc. 127(4), (1999), 1021–1028.
MR99f:60111
-
W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson, On the self-similar
nature of Ethernet traffic (extended version), IEEE/ACM Transactions on
Networking 2(1), (1994), 1–15.
Math. Review number not available.
(Full article: http://www.acm.org/pubs/citations/journals/ton/1994-2-1/p1-leland/)
-
S. B. Lowen and M. C. Teich, Fractal renewal processes generate 1/f noise,
Phys. Rev. E 47, (1993), 992–1001.
Math. Review number not available.
(Full article: http://cordelia.mclean.org:8080/~lowen/pub_list.html)
-
T. J. Lyons, Differential equations driven by rough signals, Rev. Mat.
Iberoamericana 14(2), (1998), 215–310.
MR1654527
-
B. B. Mandelbrot, Long-run linearity, locally Gaussian processes, H-spectra
and infinite variances, Internat. Econ. Rev. 10,- (1969), 82–113.
Math. Review number not available.
-
C.-K. Peng, S. Havlin, H. E. Stanley and A. L. Goldberger, Quantification
of scaling exponents and crossover phenomena in nonstationary heartbeat
time series, Chaos 5, (1995), 82–87.
Math. Review number not available.
(Full article: http://reylab.bidmc.harvard.edu/publications/Chaos/phsg.html)
-
B. Ryu and S. B. Lowen, Point process models for self-similar network traffic,
with applications, Comm. Statist. Stochastic Models 14(3), (1998), 735–761.
MR99a:60050
-
H. E. Stanley, S. V. Buldyrev, A. L. Goldberger, Z. D. Goldberger, S. Havlin,
S. M. Ossadnik, C.-K. Peng and M. Simons, Statistical mechanics in biology:
How ubiquitous are long-range correlations? Physica A 205(1--3), (1994),
214.
Math. Review number not available.
(Full article:
http://ory.ph.biu.ac.il/~havlin/publications.txt.html)
-
H. E. Stanley, S. V. Buldyrev, A. L. Goldberger, S. Havlin, S. M. Ossadnik,
C.-K. Peng, and M. Simons, Fractal landscapes in biological systems, Fractals
1(3), (1993), 283.
Math. Review number not available.
(Full article: http://ory.ph.biu.ac.il/~havlin/publications.txt.html)
-
H. J. Sussmann, On the gap between deterministic and stochastic ordinary
differential equations, Ann. Probability 6(1), (1978), 19–41.
MR57:1649
-
M. S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank,
Z. Wahrscheinlichkeitstheor. Verw. Geb. 50, (1979), 53–83.
MR81i:60020
-
M. S. Taqqu, W. Willinger and R. Sherman, Proof of a fundamental result
in self-similar traffic modeling, Computer Communication Review 27, (1997),
5–23.
Math. Review number not available.
(Full article: http://www.winlab.rutgers.edu/s3/reu/bgreading/bgreading.html
)
-
G. Terdik, Bilinear stochastic models and related problems of nonlinear
time series analysis, a frequency domain approach, Lecture Notes in Statist.
142, Springer, New York, 1999.
CMP 1 702 281
-
W. Willinger, M. S. Taqqu, R. Sherman and D. V. Wilson, Self-similarity
through high variability: Statistical analysis of Ethernet LAN traffic
at the source level, Computer Communication Review 25, (1995), 100–113.
Math. Review number not available.
(Full article: http://www.caida.org/Learn/tcpsrcmodel.html)
-
W. Willinger, M. S. Taqqu, R. Sherman and D. V. Wilson, Self-similarity
through high-variability: Statistical analysis of Ethernet LAN traffic
at the source level, IEEE/ACM Transactions on Networking 5(1), (1997),
71–86.
Math. Review number not available.
(Full article:
http://www.kric.ac.kr:8080/pubs/contents/journals/ton/1997-5/index.html)
-
M. Zähle, Integration with respect to fractal functions and stochastic
calculus. I, Probab. Theory Related Fields 111(3), (1998), 333–374.
MR99j:60073
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|