|
|
|
| | | | | |
|
|
|
|
|
Generation of One-Sided Random Dynamical Systems by Stochastic Differential Equations
|
Gerald Kager, Technische Universität Berlin Michael Scheutzow, Technische Universität Berlin |
Abstract
Let $Z$ be an $R^m$-valued semimartingale with stationary increments which is realized as a helix over a filtered metric dynamical system $S$. Consider a stochastic differential equation with Lipschitz coefficients which is driven by $Z$. We show that its solution semiflow $phi$ has a version for which $varphi(t,omega)=phi(0,t,omega)$ is a cocycle and therefore ($S$,$varphi$) is a random dynamical system. Our results generalize previous results which required $Z$ to be continuous. We also address the case of local Lipschitz coefficients with possible blow-up in finite time. Our abstract perfection theorems are designed to cover also potential applications to infinite dimensional equations.
|
Full text: PDF
Pages: 1-17
Published on: December 2, 1997
|
Bibliography
-
L. Arnold,
Random dynamical systems,
Springer, Berlin (to appear) (1998).
Math Review article not available.
-
L. Arnold and M. Scheutzow,
Perfect cocycles through stochastic differential equations,
Probab. Theory Relat. Fields 101, (1995) 65-88.
Math Review link
-
D.L. Cohn,
Measure theory,
Birkh"auser, Boston (1980).
Math Review link
-
C. Dellacherie and P.A. Meyer,
Probabilities and potential,
North Holland, Amsterdam (1978).
Math Review link
-
J. Dugundji,
Topology,
Allyn and Bacon, Boston (1966).
Math Review link
-
R. Getoor,
Excessive measures,
Birkh"auser, Boston (1990).
Math Review link
-
G. Kager,
Zur Perfektionierung nicht invertierbarer grober Kozykel,
Ph.D. thesis, Technische Universit"at Berlin.
Math Review article not available.
-
H. Kunita,
Stochastic differential equations and stochastic flows of diffeomorphisms.
Ecole d''Et'e de Prob. de Saint Flour XII. Lecture Notes in Mathematics
1097, 143-303.
Springer, Berlin (1984).
Math Review link
-
H. Kunita,
Stochastic flows and stochastic differential equations,
Cambridge University Press, Cambridge (1990).
Math Review link
-
P.A. Meyer,
La perfection en probabilit'e.
S'eminaire de Probabilit'e VI. Lecture Notes in Mathematics 258, 243-253,
Springer, Berlin (1972).
Math Review link
-
P.A. Meyer,
Flot d'une 'equation diff'erentielle stochastique.
S'eminaire de Probabilit'e XV}. Lecture Notes in Mathematics 850, 103-117,
Springer, Berlin (1981).
Math Review link
-
S.E.A. Mohammed and M. Scheutzow,
Lyapunov exponents of linear stochastic functional differential equations
driven by semimartingales. Part I: the multiplicative ergodic theory,
Ann. Inst. Henri Poincar'e (Prob. et Stat.) 32, (1996) 69-105.
Math Review link
-
P. Protter,
Semimartingales and measure preserving flows,
Ann. Inst. Henri Poincar'e (Prob. et Stat.) 22, (1986) 127-147.
Math Review link
-
P. Protter,
Stochastic integration and differential equations,
Springer, Berlin (1992).
Math Review link
-
M. Scheutzow,
On the perfection of crude cocycles,
Random and Comp. Dynamics, 4, (1996) 235-255.
Math Review article not available.
-
M. Sharpe,
General theory of Markov processes,
Academic Press, Boston (1988).
Math Review link
-
J.B. Walsh,
The perfection of multiplicative functionals,
S'eminaire de Probabilit'e VI. Lecture Notes in Mathematics 258, 233-242.
Springer, Berlin (1972).
Math Review link
-
R. Zimmer,
Ergodic theory and semisimple groups,
Birkh"auser, Boston (1984).
Math Review link
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|