![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Wiener Process with Reflection in Non-Smooth Narrow Tubes
|
Konstantinos Spiliopoulos, Brown University |
Abstract
Wiener process with instantaneous reflection in narrow tubes of
width ε<<1 around axis x is considered
in this paper.
The tube is assumed to be (asymptotically) non-smooth in the
following sense.
Let Vε(x) be the volume of the
cross-section of the tube. We assume that
(1/ε)Vε(x) converges in an appropriate
sense to a non-smooth function as
ε->0. This limiting function can be composed by smooth
functions, step functions and also the Dirac delta
distribution. Under this assumption we prove that the
x-component of the Wiener process converges weakly to a
Markov
process that behaves like a standard diffusion process away from the
points of discontinuity and has to
satisfy certain gluing conditions at the
points of discontinuity.
|
Full text: PDF
Pages: 2011-2037
Published on: September 28, 2009
|
Bibliography
-
Ethier, Stewart N.; Kurtz, Thomas G. Markov processes. Characterization and convergence.
Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics.
John Wiley & Sons, Inc., New York, 1986. x+534 pp. ISBN: 0-471-08186-8 MR0838085 (88a:60130)
Math. Review 88a:60130
-
Feller, William. Generalized second order differential operators and their lateral conditions.
Illinois J. Math. 1 (1957), 459--504. MR0092046 (19,1052c)
Math. Review MR0092046
-
Freidlin, Mark. Functional integration and partial differential equations.
Annals of Mathematics Studies, 109. Princeton University Press, Princeton, NJ, 1985. x+545 pp.
ISBN: 0-691-08354-1; 0-691-08362-2 MR0833742 (87g:60066)
Math. Review 87g:60066
-
Freidlin, Mark. Markov processes and differential equations: asymptotic problems. Lectures in Mathematics ETH
Zurich. Birkhauser
Verlag, Basel, 1996. vi+153 pp. ISBN: 3-7643-5392-9 MR1399081 (97f:60150)
Math. Review 97f:60150
-
Freidlin, Mark; Spiliopoulos, Konstantinos. Reaction-diffusion equations with nonlinear boundary conditions in narrow domains. Asymptot. Anal. 59 (2008), no. 3-4, 227--249. MR2450360 (Review)
Math. Review MR2450360
-
Freidlin, M. I.; Wentzell, A. D. Random perturbations of dynamical systems. Translated from the 1979 Russian
original by Joseph Szucs. Second edition. Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], 260. Springer-Verlag, New York, 1998. xii+430 pp.
ISBN: 0-387-98362-7 MR1652127 (99h:60128)
Math. Review 99h:60128
-
Freidlin, Mark I.; Wentzell, Alexander D. Random perturbations of Hamiltonian systems. Mem. Amer. Math. Soc. 109 (1994), no. 523, viii+82
pp. MR1201269 (94j:35064)
Math. Review 94j:35064
-
Freidlin, Mark I.; Wentzell, Alexander D. Diffusion processes on graphs and the averaging principle. Ann. Probab. 21
(1993), no. 4, 2215--2245. MR1245308 (94j:60116)
Math. Review 94j:60116
-
Freidlin, Mark I.; Wentzell, Alexander D. Necessary and sufficient conditions for weak convergence of one-dimensional Markov processes.
The Dynkin Festschrift,
95--109, Progr. Probab., 34, Birkhauser Boston, Boston, MA, 1994. MR1311713 (96b:60204)
Math. Review 96b:60204
-
Kim, Hyejin. On continuous dependence of solution of parabolic equations on coefficients. Asymptot. Anal. 62 (2009), no. 3-4, 147--162. MR2521761
Math. Review MR2521761
-
Has?minskii, R. Z. Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations.
(Russian) Teor. Verojatnost. i Primenen. 5 1960 196--214. MR0133871 (24 #A3695)
Math. Review MR0133871
-
Karatzas, Ioannis; Shreve, Steven E. Brownian motion and stochastic calculus. Second edition. Graduate Texts in Mathematics, 113. Springer-Verlag, New York,
1991. xxiv+470 pp. ISBN: 0-387-97655-8 MR1121940 (92h:60127)
Math. Review 92h:60127
-
Mandl, Petr. Analytical treatment of one-dimensional Markov processes. Die Grundlehren der mathematischen Wissenschaften, Band 151 Academia Publishing
House of the Czechoslovak Academy of Sciences, Prague; Springer-Verlag New York Inc., New York 1968 xx+192 pp. MR0247667 (40 #930)
Math. Review MR0247667
-
Rosenkrantz, Walter A. Limit theorems for solutions to a class of stochastic differential equations. Indiana Univ. Math. J. 24 (1974/75), 613--625.
MR0368143 (51 #4385)
Math. Review MR0368143
-
Stroock, Daniel W.; Varadhan, S. R. Srinivasa. Multidimensional diffusion processes. Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], 233. Springer-Verlag, Berlin-New York, 1979. xii+338 pp. ISBN: 3-540-90353-4 MR0532498 (81f:60108)
Math. Review 81f:60108
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|