|
|
|
| | | | | |
|
|
|
|
|
Quadratic Variations along Irregular Subdivisions for Gaussian Processes
|
Arnaud Begyn, Laboratoire de statistiques et probabilites, Université Paul Sabatier, Fra |
Abstract
In this paper we deal with second order quadratic
variations along general subdivisions for processes with
Gaussian increments. These have almost surely a deterministic limit
under conditions on the mesh of the subdivisions. This limit depends on
the singularity function of the process
and on the structure of the subdivisions too. Then we illustrate the
results
with the example of the time-space deformed fractional Brownian motion
and we
present some simulations.
|
Full text: PDF
Pages: 691-717
Published on: July 13, 2005
|
Bibliography
TITLE HERE
Adler, Robert J. The geometry
of random fields.
Wiley Series in Probability and Mathematical Statistics.
John Wiley & Sons, Ltd., Chichester, 1981. xi+280
pp. ISBN: 0-471-27844-0 MR0611857
(82h:60103)
|
Baxter, Glen. A strong limit
theorem for Gaussian processes. Proc. Amer. Math. Soc.
7 (1956), 522--527. MR0090920
(19,890f)
|
Benassi, Albert; Cohen,
Serge; Istas, Jacques; Jaffard,
Stéphane. Identification of filtered white noises. Stochastic
Process. Appl. 75 (1998), no. 1, 31--49. MR1629014
(99e:60104)
|
Benassi, Albert; Jaffard,
Stéphane; Roux, Daniel. Elliptic
Gaussian random processes. Rev. Mat. Iberoamericana
13 (1997), no. 1, 19--90. MR1462329
(98k:60056)
|
Wood, Andrew T. A.; Chan,
Grace. Simulation of stationary Gaussian processes in
$[0,1]sp d$. J. Comput. Graph. Statist. 3
(1994), no. 4, 409--432. MR1323050
(95k:65009)
|
Cheridito, Patrick; Kawaguchi,
Hideyuki; Maejima, Makoto. Fractional
Ornstein-Uhlenbeck processes. Electron. J. Probab. 8 (2003),
no. 3, 14 pp. (electronic). MR1961165
(2003m:60096)
|
Coeurjolly,
Jean-François. Inférence statistique pour les
mouvements Brownien
fractionnaires et multifractionnaires. (French) PhD thesis, Université Joseph
Fourier Grenoble I (2000).
|
Coeurjolly, Jean-François.
Estimating the parameters of a fractional Brownian motion by discrete
variations of its sample paths. Stat. Inference Stoch. Process.
4 (2001), no. 2, 199--227. MR1856174
(2002h:62265)
|
Cohen, Serge;
Guyon, Xavier; Perrin, Olivier; Pontier,Monique. Singularity
functions for fractional processes, and application to
fractional Brownian sheet. Preprint.
|
Dudley, R. M. Sample functions
of the Gaussian process. Ann. Probability 1
(1973), no. 1, 66--103. MR0346884
(49 #11605)
|
Gladyv sev, E. G. A new limit
theorem for stochastic processes with Gaussian increments.
(Russian) Teor. Verojatnost. i Primenen 6
1961 57--66. MR0145574
(26 #3104)
|
Guyon, Xavier; León,
José. Convergence en loi des $H$-variations d'un
processus gaussien stationnaire sur $R$.
(French) [Convergence in law of the $H$-variations of a stationary
Gaussian process in $R$] Ann. Inst. H.
Poincaré Probab. Statist. 25 (1989),
no. 3, 265--282. MR1023952
(91d:60053)
|
Hanson, D. L.; Wright,
F. T. A bound on tail probabilities for quadratic forms in
independent random variables. Ann. Math. Statist.
42 1971 1079--1083. MR0279864
(43 #5585)
|
Istas, Jacques; Lang,
Gabriel. Quadratic variations and estimation of the local
Hölder index of a Gaussian process. Ann. Inst. H.
Poincaré Probab. Statist. 33 (1997),
no. 4, 407--436. MR1465796
(98e:60057)
|
Klein, Ruben; Giné,
Evarist. On quadratic variation of processes with Gaussian
increments. Ann. Probability 3 (1975),
no. 4, 716--721. MR0378070
(51 #14239)
|
Lamperti, John. Semi-stable
stochastic processes. Trans. Amer. Math. Soc. 104
1962 62--78. MR0138128
(25 #1575)
|
Lévy, Paul. Le mouvement
brownien plan.
(French) Amer. J. Math. 62, (1940).
487--550. MR0002734
(2,107g)
|
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|