![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Convergence of Stopped Sums of Weakly Dependent Random Variables
|
Magda Peligrad, University of Cincinnati |
Abstract
In this paper we investigate stopped partial sums
for weak dependent sequences.
In particular, the results are used to obtain new maximal inequalities
for strongly mixing sequences and related almost sure results.
|
Full text: PDF
Pages: 1-13
Published on: April 6, 1999
|
Bibliography
-
Austin, D.G., Edgar, G.A. and Ionescu Tulcea, A., (1974). Pointwise convergence
in terms of expectations. Z. Wahrsch. verv Gebiete 30, 17-26.
Math. Review 50 #11402.
-
Berbee, H.C.P. (1979). Random Walks with Stationary Increments and Renewal
Theory, Mathematisch Centrum, Amsterdam.
Math. Review 81e:60093
.
-
Billingsley, P. (1968). Convergence of Probability Measures, Wiley.
Math. Review 38 #1718.
-
Bradley, R.C. (1986). Basic properties of strong mixing conditions, Progress
in Prob. and Stat., Dependence in Prob. and Stat., 11, E. Eberlein
and M. Taqqu (eds.), 165-192.
Math. Review 88g:60039.
-
Bradley, R.C., Utev, S.A. (1994). On second order properties of mixing
sequences of random fields, Prob. Theory and Math. Stat., B. Grigelionis
et al (eds.), 99-120, VSP/TEV.
Math. Review 99f:60092.
-
Doukhan, P. (1994). Mixing properties and examples, Lecture Notes in
Statistics 85, Springer Verlag.
Math. Review 96b:60090.
-
Edgar, G.A. and Sucheston, L. (1976). Amarts: A class of asymptotic martingales,
J. Multiv. Anal., 6, 193-221.
Math. Review 54 #1368.
-
Edgar, G.A., Sucheston, L. (1992). Stopping times and directed processes,
Encyclopedia
of Mathematics and its Applications, Cambridge University Press.
Math. Review 94a:60064.
-
Garsia, A. (1973). On a convex function inequality for submartingales,
Ann. Probab., 1, 171-174.
Math. Review 49 #11618.
-
Gut, A., Schmidt, K. (1983). Amarts and set function processes, Lecture
Notes in Math 1042, Springer-Verlag.
Math. Review 85k:60064.
-
Gut, A. (1986). Stopped Random Walks Limit Theorems and Applications,
Applied Probability, Springer-Verlag.
Math. Review 88m:60085.
-
Houdre, C. (1995). On the almost sure convergence of series of stationary
and related nonstationary variables, Ann. Probab., 23, 1204-1218.
Math. Review 96e:60051 .
-
Ibragimov, I.A., Linnik, Yu. V. (1971). Independent and stationary sequences
of random variables, Walters-Noordhoff, Groningen, the Netherlands.
Math. Review 48 #1287.
-
Krengel, V., Sucheston, L. (1978). On semiamarts, amarts and processes
with finite value, Advances in Prob., 4, 197-266.
Math. Review 80g:60053.
-
McLeish, D.L. (1975). A maximal inequality and dependent strong laws. Ann.
Probab., 3, 829-39.
Math. Review 53 #4216.
-
Moricz, F. (1976). Moment inequalities and strong laws of large numbers,
Z. Wahrsch. Verw. Gebiete, 35, 299-314.
Math. Review 53 #11717.
-
Newman, C., Wright, A. (1982). Associated random variables and martingale
inequalities, Z. Wahr. verw. Gebiete, 59, 361-371.
Math. Review 85d:60088.
-
Peligrad, M. (1985a). An invariance principle for j-mixing
sequences, Ann. Probab., 13, 1304-1313.
Math. Review 87b:60056.
-
Peligrad, M. (1985b). Convergence rates of the strong law for stationary
mixing sequences. Z. Wahrsch. verw. Gebiete, 70, 307-314.
Math. Review 86k:60052.
-
Peligrad, M. (1992). On the central limit theorem for weakly dependent
sequences with a decomposed strong mixing coefficient.
Stochastic Proc. Appl., 42, 181-193.
Math. Review 93j:60044.
-
Petrov, V.V. (1975). Sums of independent random variables, Springer
Verlag.
Math. Review 52 #9335.
-
Rio, E. (1993). Covariance inequalities for strongly mixing processes,
Ann. Inst. H. Poincaré, 29, 4, 589-597.
Math. Review 94j:60045.
-
Rio, E. (1995). A maximal inequality and dependent Marcinkiewicz-Zygmund
strong laws, Ann. Probab. 23, 918-937.
Math. Review 96e:60053.
-
Roussas, G.G. (1991). Recursive estimation of the transition distribution
function of a Markov process: asymptotic normality, Statist. Probab.
Lett., 11, 435-447.
Math. Review 92h:62142.
-
Roussas, G.G. (1992). Exact rates of almost sure convergence of a recursive
kernel estimate of a probability density function: application to regression
and hazard rate estimation. J. Nonpar. Statist., 1, 171-195.
Math. Review 94j:62091
-
Shao, Q. (1995). Maximal inequalities for partial sums of r-mixing
sequences. Ann. Probab., 23, 948-965.
Math. Review 96d:60027.
-
Shao, Q. (1993). Complete convergence for a-mixing
sequences, Stat. and Prob. Letters 16, 279-287.
Math. Review 94d:60036.
-
Utev, S.A. (1991). Sums of random variables with j-mixing,
Siberian Adv. Math. 1, 124-155.
Math. Review CMP 1 128 381.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|