Math. Review 2005k:60169</a>,
by
establishing an
existence and uniqueness result for delay equations driven by rough paths.
We then apply our results to the case where the driving path is
a fractional Brownian motion with Hurst parameter <i>H</i>>1/3.
">
|
|
|
| | | | | |
|
|
|
|
|
Delay equations driven by rough paths
|
Andreas Neuenkirch, Johann Wolfgang Goethe-Universität Frankfurt Ivan Nourdin, Université Paris 6 Samy Tindel, Université Nancy 1 |
Abstract
In this article, we illustrate the flexibility of the
algebraic integration formalism introduced in
M. Gubinelli, J. Funct. Anal. 216, 86-140, 2004,
Math. Review 2005k:60169,
by
establishing an
existence and uniqueness result for delay equations driven by rough paths.
We then apply our results to the case where the driving path is
a fractional Brownian motion with Hurst parameter H>1/3.
|
Full text: PDF
Pages: 2031-2068
Published on: November 11, 2008
|
Bibliography
-
E. Alòs, J.A. Léon and D. Nualart.
Stochastic Stratonovich calculus for fractional Brownian motion with Hurst parameter lesser than 1/2.
Taiwanese J. Math. 5 (2001), 609-632.
Math. Review 2000m:60059
-
E. Alòs and D. Nualart.
Stochastic integration with respect to the fractional Brownian motion.
Stochastics Stochastics Rep. 75 (2002), 129-152.
Math. Review 2004b:60138
-
P. Carmona, L. Coutin and G. Montseny.
Stochastic integration with respect to fractional Brownian motion.
Ann. Inst. Henri Poincaré, Probab. Stat. 39 (2003), 27-68.
Math. Review 2003m:60095
-
P. Cheridito and D. Nualart.
Stochastic integral of divergence type with respect to fractional Brownian motion with
Hurst parameter H in (0,1/2).
Ann. Inst. H. Poincaré, Probab. Stat. 41 (2005), 1049-1081.
Math. Review 2006m:60051
-
L. Coutin and Z. Qian.
Stochastic analysis, rough path analysis and fractional Brownian motions.
Probab. Theory Related Fields 122 (2002), 108-140.
Math. Review 2003c:60066
-
L. Decreusefond.
Stochastic integration with respect to fractional Brownian motion.
In: P. Doukhan (ed.) et al. Theory and applications of long-range
dependence. Birkhäuser Boston 2003, 203-226.
Math. Review MR1956051
-
M. Ferrante and C. Rovira.
Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H>1/2.
Bernoulli 12 (2006), 85-100.
Math. Review 2007b:60144
-
D. Feyel and A. de La Pradelle. Curvilinear integrals along enriched paths.
Electron. J. Probab. 11 (2006), 860-892.
Math. Review 2007k:60112
-
M. Gubinelli.
Controlling rough paths.
J. Funct. Anal. 216 (2004), 86-140.
Math. Review 2005k:60169
-
M. Gubinelli and S. Tindel. Rough evolution equations.
Ann. Probab., to appear.
Math. Review number not available.
-
A. Lejay. An Introduction to Rough Paths.
In: Azéma, J. (ed.) et al. Séminaire de probabilités 37, Lecture Notes
in Mathematics 1832. Springer Berlin 2003, 1-59.
Math. Review 2005e:60120
-
T. Lyons and Z. Qian.
System control and rough paths.
Clarendon Press Oxford 2002.
Math. Review 2005f:93001
-
T. Lyons.
Differential equations driven by rough signals.
Rev. Mat. Iberoamericana 14 (1998), 215-310.
Math. Review 2000c:60089
-
S.-E. A. Mohammed.
Stochastic functional differential equations.
Research Notes in Mathematics 99, Pitman Advanced Publishing Program Boston-London-Melbourne 1984.
Math. Review 86j:60151
-
S.-E. A. Mohammed.
Stochastic differential systems with memory: theory, examples and applications.
In: L. Decreusefond (ed.) et al.
Stochastic Analysis and Related Topics VI. Birkhäuser Boston 1998, 1-77.
Math. Review 99k:60155
-
A. Neuenkirch, I. Nourdin, A. Rößler and S. Tindel. Trees and
asymptotic expansions for fractional stochastic differential equations.
Ann. Inst. H. Poincaré, Probab. Stat., to appear.
Math. Review number not available.
-
I. Nourdin and T. Simon. Correcting Newton-Cotes integrals by Lévy areas.
Bernoulli 13 (2007), 695-711.
Math. Review MR2348747
-
D. Nualart.
Stochastic calculus with respect to the
fractional Brownian motion and applications.
Contemp. Math. 336 (2003), 3-39.
Math. Review 2004m:60119
-
D. Nualart and A. Răşcanu.
Differential equations driven by fractional Brownian motion.
Collect. Math. 53 (2002), 55-81.
Math. Review 2003f:60105
-
V. Pérez-Abreu and C. Tudor.
Multiple stochastic fractional integrals: A transfer principle for multiple stochastic fractional integrals.
Bol. Soc. Mat. Mex., III. 8 (2002), 187-203.
Math. Review 2003k:60122
-
F. Russo and P. Vallois.
Forward, backward and symmetric stochastic integration.
Probab. Theory Related Fields. 97 (1993), 403-421.
Math. Review 94j:60113
-
S. Tindel and I. Torrecilla.
Fractional differential systems with H>1/4.
In preparation.
Math. Review number not available.
-
M. Zähle. Integration with respect to fractal functions and stochastic calculus I.
Probab. Theory Related Fields. 111 (1998), 333-374.
Math. Review 99j:60073
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|