|
|
|
| | | | | |
|
|
|
|
|
Large deviations for Dirichlet processes and Poisson-Dirichlet distribution with two parameters
|
Shui Feng, McMaster University |
Abstract
Large deviation principles are established
for the two-parameter Poisson-Dirichlet distribution and two-parameter Dirichlet process when parameter $theta$ approaches infinity.
The motivation for these results is to understand the differences in terms of large deviations between the two-parameter models and their
one-parameter counterparts.
New insight is obtained about the role of the second parameter $alpha$
through a comparison with the corresponding results for the
one-parameter Poisson-Dirichlet distribution and Dirichlet process.
|
Full text: PDF
Pages: 787-807
Published on: June 1, 2007
|
Bibliography
-
M. Aoki (2006). Thermodynamic limit of macroeconomic or financial models: one- and two-parameter
Poisson-Dirichlet models.
Preprint.
Math. Review number not available.
-
M.A. Carlton (1999). Applications of the two-parameter Poisson-Dirichlet distribution.
Unpublished Ph.D. thesis, Dept. of Statistics,
University of California, Los Angeles.
Math. Review number not available.
-
D. Dawson and S. Feng (2001). Large deviations for the
Fleming-Viot process with neutral mutation and selection, II.
Stoch. Proc. Appl. 92, 131--162.
Math. Review 2001m:60060
-
D. Dawson and S. Feng (2006). Asymptotic behavior of Poisson-Dirichlet distribution for large mutation rate.
Ann. Appl. Probab. Vol.16, No. 2, 562-582.
Math. Review number not available.
-
A. Dembo and O. Zeitouni. Large deviations techniques
and applications. Second edition. Applications of Mathematics,
38. Springer-Verlag, New York, 1998.
Math. Review 99d:60030
-
B. Derrida (1997). From random walks to spin glasses.
Physica D , 107, 186-198.
Math. Review 98m:82072
-
W.J. Ewens. Mathematical Population Genetics, Vol. I. Springer-Verlag, New York, 2004.
Math. Review 2004k:92001
-
S. Feng and F.M. Hoppe (1998). Large deviation principles for some random combinatorial structures in
population genetics and Brownian motion.
Ann. Appl. Probab., Vol. 8, No. 4, 975--994.
Math. Review 99k:60074
-
T.S. Ferguson (1973). A Baysian analysis of some nonparametric problems.
Ann. Stat., 1:209--230.
Math. Review 50 #3441
-
R.A. Fisher, A.S. Corbet and C.B. Williams (1943). The relation between the number of species and the number of individuals in
a random sample of an animal population. J.
Animal Ecology , 12:42--58.
Math. review number not available.
-
J.H. Gillespie (1999).
The role of population size in molecular evolution.
Theoretical Population Biology, 55 145--156.
Math. review number not available.
-
F.M. Hoppe (1984). P'olya-like urns and the Ewens sampling formula.
Journal of Mathematical Biology, 20, 91--94.
Math. Review 86c:92014
-
P. Joyce, S.M. Krone, and T.G. Kurtz (2003).
When can one detect overdominant selection in the infinite-alleles model?
Ann. Appl. Probab., 13, No. 1, 181--212.
Math. Review 2004c:60059
-
J.C.F. Kingman (1975). Random discrete distributions. J. Roy.
Statist. Soc. B, 37, 1-22.
Math. Review 51 #4505
-
Lynch, J. and Sethuraman, J. (1987).
Large deviations for processes with independent increments.
Ann. Probab., 15:610--627.
Math. Review 88m:60076
-
M. Perman (1993). Order statistics for jumps of normalised subordinators.
Stoch. Proc. Appl., 46,267-281.
Math. Review 94g:60141
-
J. Pitman (1995). Exchangeable and partially exchangeable random partitions.
Prob. Theory Rel. Fields, 102, 145--158.
Math. Review 96e:60059
-
J. Pitman (1996). Random discrete distributions invariant under
size-biased permutation. Adv. Appl. Probab., 28,525-539.
Math. Review 97d:62020
-
J. Pitman (1996). Some developments of the Blackwell-MacQueen urn scheme.
In Statistics, Probability and Game Theory. Papers in Honor of David Blackwell
(T.S. Ferguson, L.S. Shapley, and J.B. MacQueen, eds.), 245--267. IMS Lecture Notes-Monograph series, Vol. 30.
Math. Review 99c:60017
-
J. Pitman and M. Yor (1997). The two-parameter Poisson-Dirichlet
distribution derived from a stable subordinator. Ann.
Probab.,Vol. 25, No. 2, 855-900.
Math. Review 98f:60147
-
A.A. Puhalskii. On functional principle of large deviations. In
V.Sazonov and T. Shervashidze, editors. New Trends in
Probability and Statistics. pages 198-218. VSP Moks'las, Moskva,
1991.
Math. Review 94c:60050
-
L.A. Shepp and S.P. Lloyd (1966). Ordered cycle length in a random permutation.
Trans. Amer. Math. Soc.
Probab.,Vol. 121, 340-357.
Math. Review 33 #3320
-
A.M. Vershik (1986). The asymptotic distribution of factorizations of natural numbers into prime divisors. Soviet Math. Dokl., 34:57-61.
Math. Review 87i:11115
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|