![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Local Energy Statistics in Directed Polymers
|
Irina Kurkova, Université de Paris VI (Pierre et Marie Curie), France |
Abstract
Recently, Bauke and Mertens conjectured that the local statistics
of energies in random spin systems with discrete
spin space should, in most circumstances,
be the same as in the random energy model.
We show that this conjecture holds true as well
for directed polymers in random environment.
We also show that, under certain conditions,
this conjecture holds for directed polymers
even if energy levels that grow moderately
with the volume of the system are considered.
|
Full text: PDF
Pages: 5-25
Published on: January 13, 2008
|
Bibliography
- H. Bauke, S. Franz, S. Mertens. Number partitioning as random energy model. Journal of Stat. Mech. : Theory and Experiment, page P04003 (2004).
- H. Bauke, S. Mertens. Universality in the level statistics of disordered systems. Phys. Rev. E 70, 025102(R) (2004).
- G. Ben Arous, V. Gayrard, A. Kuptsov. A new REM conjecture. Preprint (2006).
- Bolthausen, Erwin. A note on the diffusion of directed polymers in a random environment. Comm. Math. Phys. 123 (1989), no. 4, 529--534. MR1006293 (91a:60270)
- Borgs, Christian; Chayes, Jennifer; Pittel, Boris. Phase transition and finite-size scaling for the integer partitioning problem.Analysis of algorithms (Krynica Morska, 2000). Random Structures Algorithms 19 (2001), no. 3-4, 247--288. MR1871556 (2002j:90061)
- C. Borgs, J. Chayes, S. Mertens and C. Nair. Proof of the local REM conjecture for number partitioning I: Constant energy scales. Preprint (2005). To appear in Random Structures and Algorithms
- C. Borgs, J. Chayes, S. Mertens and C. Nair. Proof of the local REM conjecture for number partitioning II: Growing energy scales. Preprint (2005). To appear in Random Structures and Algorithms
- Borgs, C.; Chayes, J. T.; Mertens, S.; Pittel, B. Phase diagram for the constrained integer partitioning problem. Random Structures Algorithms 24 (2004), no. 3, 315--380. MR2068872 (2005c:82030)
- Bovier, Anton; Kurkova, Irina. Poisson convergence in the restricted $k$-partitioning problem. Random Structures Algorithms 30 (2007), no. 4, 505--531. MR2326156
- Bovier, Anton; Kurkova, Irina. Local energy statistics in disordered systems: a proof of the local REM conjecture. Comm. Math. Phys. 263 (2006), no. 2, 513--533. MR2207653 (2007b:82027)
- A. Bovier, I. Kurkova. A tomography of the GREM : beyond the REM conjecture. Commun. Math. Phys. 263 535--552 (2006).
- Comets, Francis; Shiga, Tokuzo; Yoshida, Nobuo. Probabilistic analysis of directed polymers in a random environment: a review. Stochastic analysis on large scale interacting systems, 115--142, Adv. Stud. Pure Math., 39, Math. Soc. Japan, Tokyo, 2004. MR2073332 (2005d:82050)
- Derrida, Bernard. Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B (3) 24 (1981), no. 5, 2613--2626. MR0627810 (83a:82018)
- B. Derrida. A generalisaton of the random energy model that incldes correlations betwen energies. Jounal Phys. Lett. 46, 401--407(1985).
- Erdös, P.; Taylor, S. J. Some problems concerning the structure of random walk paths. Acta Math. Acad. Sci. Hungar. 11 1960 137--162. (unbound insert). MR0121870 (22 #12599)
- Feller, William. An introduction to probability theory and its applications. Vol. I.Third edition John Wiley & Sons, Inc., New York-London-Sydney 1968 xviii+509 pp. MR0228020 (37 #3604)
- D.A. Huse, C.L. Henley. Pinning and roughening of domain wall in Ising systems due to random impurities, Phys. Rev. Lett. 54, 2708--2711 (1985)
- Imbrie, J. Z.; Spencer, T. Diffusion of directed polymers in a random environment. J. Statist. Phys. 52 (1988), no. 3-4, 609--626. MR0968950 (90m:60122)
- H. Krug, H. Spohn. Kinetic roughening of growing interfaces. In: Solids Far from Equilibrium, C. Godr`eche ed., Cambridge University Press (1991).
- Mertens, Stephan. Phase transition in the number partitioning problem. Phys. Rev. Lett. 81 (1998), no. 20, 4281--4284. MR1653530 (99g:68097)
- Mertens, Stephan. A physicist's approach to number partitioning.Phase transitions in combinatorial problems (Trieste, 1999). Theoret. Comput. Sci. 265 (2001), no. 1-2, 79--108. MR1848213 (2003j:68068)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|