R. Mikulevicius, Vilnius University B. Rozovskii, University of Southern California
Abstract
We extend Krylov's L_p-solvability theory to
the Cauchy problem for systems of parabolic stochastic partial
differential equations. Some additional integrability and
regularity properties are also presented.
N. V. Krylov, On L_p-theory of stochastic partial
differential equations, SIAM J. Math. Anal. 27 (1996), 313--340. Math Review link
N. V. Krylov, An analytic approach to SPDEs, In: Stochastic Partial
Differential Equations: Six Perspectives, AMS Mathematical Surveys and
Monographs 64 (1999), 185--242. Math Review link
Z. Brzezniak, Stochastic partial differential equations in M-type 2 Banach
spaces, Potential Anal. 4 (1995), 1--45. Math Review link
A. L. Neihardt, Stochastic integrals in 2-uniformly smooth Banach spaces,
Ph. D. Thesis, University of Wisconsin, (1978). Math. Review number not available.
R. Mikulevicius, B. L. Rozovskii, On Equations of Stochastic Fluid Mechanics
In: Stochastics in Finite and Infinite Dimensions: In Honor of Gopinath Kallianpur
(Editors: T. Hida, R. Karandikar, H. Kunita, B. Rajput, S. Watanabe and J. Xiong ),
Birkhauser, (2001), 285--302. Math. Review number not available.
J. B. Walsh, An introduction to stochastic partial differential equations, In:
Ecole d'Ete' de Probabilite's de Saint-Flour XIV (1984), 265--439, Lecture Notes in
Math. 1180 , Springer-Verlag, NewYork, (1986). Math Review link
J. Bergh, J. Loefstroem, Interpolation Spaces, Springer-Verlag, Berlin, (1976). Math Review link
E. Stein, Singular Integrals and Differentiability Properties of Functions,
Princeton University Press, Princeton, (1970). Math Review link
M. Yor, Sur les integrales stochastiques a valeurs dans un espace de Banach,
Ann. Inst. Henri Poincare, 10(1) (1974), 31--36 Math Review link