![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Large Favourite Sites of Simple Random Walk and the Wiener Process
|
Endre Csáki, Hungarian Academy of Sciences Zhan Shi, Université de Paris VI |
Abstract
Let $U(n)$ denote the most visited point by a
simple symmetric random walk ${ S_k}_{kge 0}$ in
the first $n$ steps. It is known that $U(n)$ and
$max_{0le kle n} S_k$ satisfy the same law of the iterated
logarithm, but have different upper functions (in the sense of
P. Lévy). The distance between them however turns out to be transient.
In this paper, we establish the exact rate of escape of this distance.
The corresponding problem for the Wiener process is also studied.
|
Full text: PDF
Pages: 1-31
Published on: September 30, 1998
|
Bibliography
-
T. W. Anderson,
The integral of symmetric unimodular functions over
a symmetric convex set and some probability
inequalities,
Proc. Amer. Math. Soc. 6, (1955) 170--176.
Math Review link
-
R. F. Bass, and P. S. Griffin,
The most visited site of Brownian motion and simple
random walk,
Z. Wahrsch. Verw. Gebiete 70, (1985) 417--436.
Math Review link
-
J. Bertoin and L. Marsalle, Point le plus visite
par un mouvement brownien avec derive, Prepublication du
Laboratoire de Probabilites No. 395, Universite Paris
VI (1997)
Math Review article not available.
-
A. N. Borodin, Distributions of functionals of
Brownian local time I and II,
Th. Probab. Appl. 34, (1989) 385--401 and 576--590.
Math Review link
-
K. L. Chung, On the maximal partial sums of
sequences of independent random variables,
Trans. Amer. Math. Soc. 64, (1948) 205--233.
Math Review link
-
Z. Ciesielski and S. J. Taylor,
First passage times and sojourn times for Brownian
motion in space and the exact Hausdorff measure of
the sample path,
Trans. Amer. Math. Soc. 103, (1962) 434--450.
Math Review link
-
E. Csaki, On the lower limits of maxima and minima
of Wiener process and partial sums,
Z. Wahrsch. verw. Gebiete 43, (1978) 205--221.
Math Review link
-
E. Csaki, An integral test for the supremum of
Wiener local time,
Probab. Th. Rel. Fields 83, (1989) 207--217.
Math Review link
-
M. Csorgo and L. Horvath, On best possible
approximations of local time,
Statist. Probab. Lett. 8, (1989) 301--306.
Math Review link
-
N. Eisenbaum, Un theoreme de Ray--Knight lie au
supremum des temps locaux browniens,
Probab. Th. Rel. Fields 87, (1990) 79--95.
Math Review link
-
N. Eisenbaum, On the most visited sites by a
symmetric stable process
Probab. Th. Rel. Fields 107, (1997) 527--535.
Math Review article not available.
-
P. Erdos and P. Revesz, On the favourite
points of a random walk,
Mathematical Structures -- Computational
Mathematics -- Mathematical Modelling
2, 152--157. Sofia (1984)
Math Review link
-
I. S. Gradshteyn and I. M. Ryzhik,
Table of Integrals, Series, and Products,
Academic Press, New York (1980)
Math Review link
-
W. M. Hirsch, A strong law for the maximum
cumulative sum of independent random variables,
Comm. Pure Appl. Math. 18, (1965) 109--127.
Math Review link
-
Y. Hu and Z. Shi, Favourite sites of transient
Brownian motion,
Stoch. Proc. Appl. 73, (1998) 87--99.
Math Review article not available.
-
H. Kesten, An iterated logarithm law for the local
time,
Duke Math. J. 32, (1965) 447--456.
Math Review link
-
D. Khoshnevisan and T. M. Lewis, The favorite point
of a Poisson process,
Stoch. Proc. Appl. 57, (1995) 19--38.
Math Review link
-
F. B. Knight, Random walks and the sojourn density
process of Brownian motion,
Trans. Amer. Math. Soc. 109, (1963) 56--86.
Math Review link
-
C. Leuridan, Le point dun ferme le plus
visite par le mouvement brownien,
Ann. Probab. 25, (1997) 953--996.
Math Review link
-
D. Ray, Sojourn times of a diffusion process
Illinois J. Math. 7, (1963) 615--630.
Math Review link
-
P. Revesz, Random Walk in Random and
Non--Random Environments,
World Scientific, Singapore (1990)
Math Review link
-
D. Revuz and M. Yor, Continuous Martingales
and Brownian Motion, Springer, Berlin, 2nd ed.
(1994)
Math Review link
-
L. C. G. Rogers and D. Williams, Diffusions,
Markov Processes and Martingales, Vol. II:
Ito Calculus, Wiley, Chichester (1987)
Math Review link
-
B. Toth, and W. Werner, Tied favourite edges for
simple random walk,
Combin. Probab. Comput. 6, (1997) 359--369.
Math Review article not available.
-
M. Yor, Local Times and Excursions for Brownian
Motion: A Concise Introduction, Lecciones en
Matematicas, Universidad Central de Venezuela
(1995)
Math Review article not available.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|