|
|
|
| | | | | |
|
|
|
|
|
Intrinsic Location Parameter of a Diffusion Process
|
R. W. R. Darling, National Security Agency |
Abstract
For nonlinear functions f of a random vector Y,
E[f(Y)] and f(E[Y]) usually differ. Consequently
the mathematical expectation of Y is not intrinsic: when we change
coordinate systems, it is not invariant.This article is about a fundamental
and hitherto neglected property of random vectors of the form Y
= f(X(t)), where X(t) is the value at
time t of a diffusion process X: namely that there exists
a measure of location, called the "intrinsic location parameter" (ILP),
which coincides with mathematical expectation only in special cases, and
which is invariant under change of coordinate systems. The construction
uses martingales with respect to the intrinsic geometry of diffusion processes,
and the heat flow of harmonic mappings. We compute formulas which could
be useful to statisticians, engineers, and others who use diffusion process
models; these have immediate application, discussed in a separate article,
to the construction of an intrinsic nonlinear analog to the Kalman Filter.
We present here a numerical simulation of a nonlinear SDE, showing how
well the ILP formula tracks the mean of the SDE for a Euclidean geometry.
|
Full text: PDF
Pages: 1-23
Published on: March 14, 2001
|
Bibliography
-
S.-I. Amari. Differential-Geometrical Methods in Statistics. Lecture Notes
in Statistics 28, Springer-Verlag, New York, 1985. 86m:62053
-
M. Arnaudon. Espérances conditionelles et C-martingales dans les
variétés. Séminaire de Probabilité XXVIII,
Lecture Notes in Mathematics 1583, (1994) 300-311. 96c:58180
-
M. Arnaudon, A. Thalmaier. Stability of stochastic differential equations
in manifolds. Séminaire de Probabilités XXXII, M. Ledoux
and M. Yor, (eds.), Lecture Notes in Mathematics 1686 (1998), 188-214.
99i:60115
-
M. Arnaudon, A. Thalmaier. Complete lifts of connections and stochastic
Jacobi fields. J. Math. Pures Appl. 77 (1998), 283-315,
99c:58168
-
O. E. Barndorff-Nielsen. Parametric statistical models and likelihood.
Lecture Notes in Statistics 50, Springer-Verlag, New York, 1988. 90h:62001
-
Y.-M. Chen, W.-Y. Ding. Blow-up and global existence for heat flows of
harmonic maps. Invent. Math. 99, (1990) 567-578. 90m:58039
-
D. Crisan, T. J. Lyons. Nonlinear filtering and measure-valued processes.
Probability Theory and Related Fields 109 (1997), 217-244. 98j:93080
-
R. W. R. Darling. Differential Forms and Connections. Cambridge University
Press, 1994. 95j:53038
-
R. W. R. Darling. Constructing gamma-martingales with prescribed limit
using backwards SDE. Annals of Probability, 23 (1995), 1234-1261.
96f:58189
-
R. W. R. Darling. Martingales on noncompact manifolds: maximal inequalities
and prescribed limits. Ann. de l'Institut H. Poincaré B, 32, No.
4 (1996), 1-24. 97e:58229
-
R. W. R. Darling. Geometrically intrinsic nonlinear recursive filters I:
algorithms. U. C. Berkeley Statistics Preprint No.
494 (1997).
-
R. W. R. Darling. Geometrically intrinsic nonlinear recursive filters II:
foundations. U. C. Berkeley Statistics Preprint No.
512 (1998).
-
R. W. R. Darling, Etienne Pardoux. Backwards SDE with random terminal time,
and applications to semilinear elliptic PDE. Annals of Probability 25 (1997),
1135 - 1159. 98k:60095
-
P. Del Moral. Measure-valued processes and interacting particle systems;
application to nonlinear filtering problems. Annals of Applied Probability
8 (1998), 438-495. 99c:60213
-
J. L. Doob. A probability approach to the heat equation, Trans. Amer. Math.
Soc. 80 (1955), 216-280. 18,
76g
-
J. Eells, J. H. Sampson. Harmonic mappings of Riemannian manifolds. Amer.
J. Math 86 (1964), 109-160. 29,1603
-
J. Eells, L. Lemaire. A report on harmonic maps. Bull. London Math. Soc.
10 (1978), 1-68. 82b:58033
-
J. Eells, L. Lemaire. Another report on harmonic maps. Bull. London Math.
Soc. 20 (1988), 385-524. 89i:58027
-
K. D. Elworthy. Stochastic Differential Equations on Manifolds. Cambridge
University Press, 1982. 84d:58080
-
M. Emery. Convergence des martingales dans les variétés.
Colloque en l'hommage de Laurent Schwartz, Vol. 2, Astérisque 132,
Société Mathématique de France (1985), 47-63.
87f:58172
-
M. Emery. Stochastic Calculus on Manifolds. Springer, Berlin, 1989. (Appendix
by P. A. Meyer). 90k:58244
-
M. Emery, G. Mokobodzki. Sur le barycentre d'une probabilité dans
une variété. Séminaire de Probabilités XXV,
Lecture Notes in Mathematics 1485 (1991), 220-233. 93j:58143
-
R. S. Hamilton. Harmonic maps of manifolds with boundary. Lecture Notes
in Mathematics 471 (1975). 58,2872
-
H. Hendriks. A Cramér-Rao type lower bound for estimators with values
in a manifold. Journal of Multivariate Analysis 38 (1991), 245-261. 93b:62084
-
W. S. Kendall. Probability, convexity, and harmonic maps with small image
I: uniqueness and fine existence. Proc. London Math. Soc. 61 (1990), 371-406.
91g:58062
-
W.S. Kendall. Probability, convexity, and harmonic maps II: smoothness
via probabilistic gradient inequalities. Journal of Functional Analysis
126 (1994), 228-257. 95j:58036
-
O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Ural'ceva. Linear and Quasilinear
Equations of Parabolic Type. Translations of Math. Monongraphs 23, American
Mathematical Society, Providence, 1968. 39,3159b
-
T. J. Lyons. What you can do with n observations, in Geometrization of
Statistical Theory, C. T. J. Dodson (ed.), Proceedings of the GST Workshop,
University of Lancaster, 28-31 October 1987. 90f:62008
-
M. K. Murray, J. W. Rice. Differential Geometry and Statistics. Chapman
and Hall, London, 1993. 96a:62001
-
J. M. Oller, J. M. Corcuera. Intrinsic analysis of statistical estimation.
Annals of Statistics 23 (1995), 1562-1581.
96m:62039
-
E. Pardoux, S. Peng. Backward stochastic differential equations and quasilinear
parabolic partial differential equations, in Stochastic Partial Differential
Equations and Their Applications, B.L. Rozowskii, R.B. Sowers (eds.), Lecture
Notes in Control and Information Sciences 176, Springer-Verlag, Berlin,
1992. 93k:60157
-
J. Picard. Martingales on Riemannian manifolds with prescribed limit. J.
Functional Analysis 99 (1991), 223-261.
92g:58134
-
J. Picard. Barycentres et martingales sur une variété. Annales
de L'Institut Henri Poincaré B, 30 (1994), 647-702. 96a:58212
-
D. Revuz, M. Yor. Continuous Martingales and Brownian Motion. Springer-Verlag,
Berlin 1991. 92d:60053
-
R. Strichartz. Sub-Riemannian geometry. Journal of Differential Geometry
24 (1986), 221 - 263; corrections 30 (1989), 595 - 596. 88b:53055
-
M. Struwe: Variational Methods: Applications to Nonlinear Partial Differential
Equations and Hamiltonian Systems. Springer-Verlag, Berlin, 1996. 98f:49002
-
A. Thalmaier. Brownian motion and the formation of singularities in the
heat flow for harmonic maps. Probability Theory and Related Fields 105
(1996), 335-367. 97i:58182
-
A. Thalmaier. Martingales on Riemannian manifolds and the nonlinear heat
equation, in Stochastic Analysis and Applications, I. M. Davies, A. Truman
and K. D. Elworthy, World Sci. Publishing, River Edge, NJ, (1996), 429-440.
98c:58179
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|