  | 
	
	
	 | 
	 | 
	
		 |  |  |  |  | 	 | 
	 | 
	 | 
	
		
	 | 
	 | 
	 | 
	 
	
 
 
	
	    
On the Approximate Solutions of the Stratonovitch Equation	   
  
	 | 
  
 
	  
		 
			
			   
D.  Feyel, Université Evry A.  de La Pradelle, Université Paris VI 			 | 
		  
	   
		
  
		
			 
				
					   
					   Abstract 
	We present new methods for proving the convergence of the classical
approximations of the Stratonovitch equation. We especially make use of the
fractional Liouville-valued Sobolev space $W^{r,p}({cal J}_{alpha,p})$. We then
obtain a support theorem for the capacity $c_{r,p}$.
				   
 
  
				 | 
			  
		   
   
Full text: PDF
  Pages: 1-14
  Published on: May 13, 1998
 
  
	 | 
 
 
                
                         
                                
                                          
                                           Bibliography 
        
- 
S.Aida-S.Kusuoka-D.Stroock,
On the support of Wiener functionals
In Asymptotic problems in Probability Theory; Wiener functionals and
Asymptotics; p.3-34. Pitman Research Notes, Longman, 1993
Math Review link
 - 
G.Ben Arous-G.Gradinaru,
Normes hoeldériennes et support des diffusions
CRAS Paris, t.316, série I, no 3, 1993, p.283-286
Math Review link
 - 
G.Ben Arous-G.Gradinaru-M.Ledoux,
Hoelder norms and the support theorem for diffusions.
Ann. Inst. Henri Poincaré, Proba. Stat. 30, no 3, p.415-436, 1994
Math Review link
 - 
D.Feyel-A.de La Pradelle,
Capacités gaussiennes
Ann. Inst. Fourier, t.41, f.1, p.49-76, 1991
Math Review link
 - 
D.Feyel-A.de La Pradelle,
Fractional integrals and Brownian processes
Prépublication 39 de l'Université d'Evry Val d'Essonne, mars 96
Math Review link
 - 
D.Feyel-A.de La Pradelle, On fractional Brownian processes
To appear in Potential Analysis, 1999
 - 
I.Gyoengy-T.Proehle,
On the approximation of Stochastic Differential Equations and on
Stroock-Varadhan's Support Theorem.
Computers Math. Applic. 19, 65-70, 1990
Math Review link
 - 
N.Ikeda-S.Watanabe,
Stochastic Differential Equations and Diffusion Processes
Amsterdam-Oxford-New-York: North Holland; Tokyo: Kodansha, 1981
Math Review link
 - 
V.Mackevicius,
On the support of the solution of Stochastic Differential Equations.
Litovskij Matematikow Rinkings XXXVI (1), 91-98, 1986
Math Review link
 - 
A.Millet-M.Sanz-Solé,
A simple proof of the support theorem for diffusion processes.
Sém. Proba. XXVIII, Lecture Notes in Math. no 1583 p.36-48,
1994.
Math Review link
 - 
D. Nualart,
The Malliavin calculus and related topics.
Springer-Verlag, 1995
Math Rev link
 - 
J.Ren,
Analyse quasi-sûre des équations différentielles stochastiques
Bull. Soc. Math.,2ème série, 114, p.187-213, 1990
Math Review link
 - 
S.G.Samko, A.A.Kilbas, O.I.Marichev,
Fractional Integrals and Derivatives (Theory and Applications).
Gordon and Breach Science Publishers, 1987 (976 pages
Math Review link
 - 
D.W.Stroock-SRS.Varadhan,
On the Support of Diffusion Processes with Applications to the strong
maximum Principle.
Proc. sixth Berkeley Symp. Math. Stat. rob. 3, 333-359, Univ. California
Press, Berkeley, 1972
Math Review link
  
                                   
 
  
                                 | 
                          
                   
	  
 
 
 
 | 
		
			
 
 
 
 
 
 
 
 
  
			
			
			
			 
		 | 
		
	| 
	 | 
	
    	 
    	
  
     | 
     | 
 
	 | 
	
		 |  |  |  |  | 
 
 Electronic Journal of Probability.   ISSN: 1083-6489 	 | 
	 |