 |
|
|
| | | | | |
|
|
|
|
|
Multiple Scale Analysis of Spatial Branching Processes under the Palm Distribution
|
Anita Winter, Universität Erlangen-Nürnberg |
Abstract
We consider two types of measure-valued branching
processes on the lattice Zd. These are on the one hand side a
particle system, called branching random walk,
and on the other hand its continuous mass analogue, a system
of interacting diffusions also called super random walk.
It is known that the long-term behavior differs sharply in low and high
dimensions: if d<=2 one gets local extinction,
while, for d>=3, the systems tend to a non-trivial equilibrium.
Due to Kallenberg's criterion, local
extinction goes along with clumping around a 'typical surviving particle.'
This phenomenon is called clustering.
A detailed description of the clusters has been given for
the corresponding processes on R2 in Klenke (1997).
Klenke proved that with the right scaling the mean number of particles
over certain blocks are asymptotically jointly distributed
like marginals of a system of coupled Feller diffusions,
called system of tree indexed Feller diffusions, provided that the
initial intensity is appropriately increased to counteract
the local extinction.
The present paper takes different remedy against the local
extinction allowing also for state-dependent branching mechanisms.
Instead of increasing the initial intensity,
the systems are described
under the Palm distribution. It will turn out together with the
results in Klenke (1997)
that the change to the Palm measure and the
multiple scale analysis commute, as ttoinfty.
The method
of proof is based on the fact that the tree indexed systems of
the branching processes and of the diffusions
in the limit are completely characterized by
all their moments. We develop a machinery to describe the space-time moments
of the superprocess effectively and explicitly.
|
Full text: PDF
Pages: 1-74
Published on: March 15, 2002
|
Bibliography
-
Bhattacharya, R.N. and Rao, R.R. (1976),
Normal approximation and asymptotic
expansions, Wiley New-York.
MR
55#9219
-
Chauvin, B., Rouault, A. and Wakolbinger, A. (1991),
Growing conditioned
trees, Stoc. Proc. Appl., 39, 117-130. MR
93d:60138
-
Cox, J.T.; Fleischmann, K. and Greven, A. (1996),
Comparison of interacting
diffusions and application to their ergodic theory, Probab. Theor.
Rel. Fields, 105, 513-528.
MR
97h:60073
-
Cox, J.T. and Greven, A. (1994),
Ergodic theorems for infinite systems
of locally interacting diffusions, Ann. Probab., 22(2), 833-853.
MR
95h:60158
-
Cox, J.T., Greven, A. and Shiga, T. (1995),
Finite and infinite systems
of interacting diffusions, Probab. Rel. Fields, 103, 165-197.
MR
96i:60105
-
Cox, J.T. and Griffeath, D. (1986),
Diffusive clustering in the two
dimensional voter model, Ann. Probab., 14(2), 347-370. MR
87j:60146
-
Dawson, D.A. (1977),
The critical measure diffusion process, Z.
Wahrscheinlichleitstheorie verw. Gebiete, 40, 125-145. MR
57#17857
-
Dawson, D.A. (1993),
Measure-valued Markov processes, École
d'Été de Probabilités de Saint Flour XXI -- 1991, Lect. Notes
in Math. 1541, 1-260, Springer-Verlag. MR
96m:60101
-
Dawson, D.A. and Greven, A. (1993), Multiple time scale analysis of
hierarchical interacting systems, A Festschrift to honor G. Kallianpur,
Springer New York, 41-50. MR
97j:60181
-
Dawson, D.A. and Greven, A. (1993),
Multiple time scale analysis of
interacting diffusions, Probab. Theory Relat. Fields 95, 467-508.
MR
94i:60122
-
Dawson, D.A. and Greven, A. (1996),
Multiple space-time analysis for
interacting branching models, EJP,
1(14), 1-84,
http://www.math.washington.edu/~ejpecp/EjpVol1/paper14.abs.html.
MR
97m:60148
-
Dawson, D.A., Greven, A. and Vaillancourt, J. (1995),
Equilibria and
quasi equilibria for infinite systems of interacting Fleming-Viot processes,
Trans. AMS, 347(7), 2277-2361, Memoirs of the American Mathematical
Society 93, 454. MR
95k:60248
-
Deuschel, J. D. (1988), Central limit theorem for an infinite lattice
system of interacting diffusion processes, Ann. Probab. 16,
700-716. MR
89f:60022
-
Durrett, R. (1979),
An infinite particle system with additive interactions,
Adv. Appl. Prob.,
11, 355-383. MR
80i:60116
-
Durrett, R. (1991), Probability: Theory and Examples, Duxbury Press,
Belmont, California. MR
98m:60001
-
Dynkin, E.B. (1988), Representation for functionals of superprocesses
by multiple stochastic integrals, with applications to self-intersection
local times, Astérisque, 157-158, 147-171. MR
90b:60103
-
Etheridge, A. (1993),
Asymptotic behavior of measure-valued critical
branching processes, Proc. AMS, 118(4), 1251-1261. MR
93j:60118
-
Ethier, S.N. and Krone, S.M. (1995), Comparing Fleming-Viot and Dawson-Watanabe
processes, Stoc. Proc. Appl., 60, 171-190. MR
97g:60064
-
Fleischman, J. (1978),
Limiting distributions for branching random fields,
Trans. AMS, 239, 353-389. MR
57#17858
-
Fleischmann, K. and Greven, A. (1996), Time-space analysis of the cluster-formation
in interacting diffusions, EJP, 1(6), 1-46,
http://www.math.washington.edu/~ejpecp/EjpVol1/paper6.abs.html.
MR 97e:60151
-
Gorostiza, L.G., Roelly, S. and Wakolbinger, A. (1992), Persistence
of critical multitype particle and measure branching processes, Probab.
Theory Relat. Fields, 92, 313-335. MR
93e:60171
-
Gorostiza, L.G. and Wakolbinger, A. (1991), Persistence criteria for
a class of critical branching particle systems in continuous time,
Ann. Probab., 19(1), 266-288. MR
91k:60089
-
Holley, R. and Liggett, T.M. (1975), Ergodic theorems for weakly interacting
systems and the voter model, Ann. Probab., 3, 643-663.
MR
53#6798
-
Hurwitz, A. (1964), Vorlesungen über allgemeine Funktionentheorie,
Springer-Verlag. MR
30#3959
-
Kallenberg, O. (1977),
Stability of critical cluster fields, Math.
Nachr., 77, 7-43. MR
56#1451
-
Kallenberg, O. (1983), Random Measures, Akademie-Verlag Berlin.
MR 87g:60048
-
Klenke, A. (1996) Different clustering regime in systems of hierarchically
interacting diffusions,Ann. Probab., 24(2), 660-697. MR
97h:60125
-
Klenke, A. (1997), Multiple scale analysis of clusters in spatial branching
models, Ann. Probab., 25(4), 1670-1711. MR
99a:60091
-
Klenke, A. (1998) Clustering and invariant measures for spatial branching
models with infinite variance, Ann. Probab., 26(3), 1057-1087.
MR 99i:60160
-
Klenke, A. (2000), Diffusive clustering on interacting Brownian motions
on $Z^2$, Stoch. Proc. Appl., 89(2), 261-268. MR
2001h:60178
-
Kopietz, A. (1998), Diffusive Clusterformation für wechselwirkende
Diffusionen mit beidseitig unbeschränktem Zustandsraum, Dissertation,
Universität Erlangen-Nürnberg.
-
Lee, T. Y. (1991), Conditional limit distributions of critical branching
Brownian motions, Ann. Probab., 19(1), 289-311. MR
91m:60154
-
Liggett, T.M. and Spitzer, F. (1981),
Ergodic theorems for coupled random
walks and other systems with locally interacting components, Z. Wahrscheinlichkeitstheorie
verw. Gebiete, 56, 443-468. MR
82h:60193
-
Matthes, K. (1972), Infinitely divisible point processes, in Stochastic
point processes: Statistical Analysis, Theory, and Applications, Wiley
Interscience, New-York/London/Sydney/Toronto, 384-404.
MR 51#1951
-
Roelly-Coppoletta, S. and Rouault, A. (1989), Processes de Dawson-Watanabe
conditionné par le futur lointain, C.R.Acad.Sci.Paris,
309,
Série I, 867-872. MR
91d:60210
-
Shiga, T. (1980), An interacting system in population genetics,
Jour. Kyoto Univ., 20(2), 213-243. MR
82e:92029a
-
Shiga, T. (1992), Ergodic theorems and exponential decay of sample paths
for certain interacting diffusion systems, Osaka J. Math., 29,
789-807. MR
94i:60006
-
Sirjaev, A.N. (1988), Wahrscheinlichkeit, VEB Deutscher Verlag der
Wissenschaften Berlin, 308.
-
Winter, A. (1999), Multiple scale analysis of spatial branching processes
under the Palm distribution, Dissertation, Universität Erlangen-Nürnberg,
http://www.mi.uni-erlangen.de/~winter/.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|