![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Processes with inert drift
|
David W White, Belmont University |
Abstract
We construct a stochastic process whose drift is a function of the process's local time at a reflecting barrier. The process arose as a model of the interactions of a Brownian particle and an inert particle in a paper by Knight [7]. We construct and give asymptotic results for two different arrangements of inert particles and Brownian particles, and construct the analogous process in higher dimensions.
|
Full text: PDF
Pages: 1509-1546
Published on: December 4, 2007
|
Bibliography
- Barlow, Martin; Burdzy, Krzysztof; Kaspi, Haya; Mandelbaum, Avi. Variably skewed Brownian motion.
Electron. Comm. Probab. 5 (2000), 57--66 (electronic). MR1752008 (2001j:60146)
-
Bass, R.; Burdzy, K.; Chen, Z. Q.; Hairer, M. Stationary distributions
for diffusions with inert drift, (forthcoming paper).
- Burdzy, Krzysztof; White, David. A Gaussian oscillator.
Electron. Comm. Probab. 9 (2004), 92--95 (electronic). MR2108855 (2005i:60173)
- Ethier, Stewart N.; Kurtz, Thomas G. Markov processes.
Characterization and convergence.
Wiley Series in Probability and Mathematical Statistics: Probability
and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. x+534 pp. ISBN: 0-471-08186-8 MR0838085 (88a:60130)
-
- Gradshteyn, I. S.; Ryzhik, I. M. Table of integrals, series, and products.
Translated from the Russian.
Sixth edition.
Translation edited and with a preface by Alan Jeffrey and Daniel
Zwillinger.
Academic Press, Inc., San Diego, CA, 2000. xlvii+1163 pp. ISBN: 0-12-294757-6 MR1773820 (2001c:00002)
- Karatzas, Ioannis; Shreve, Steven E. Brownian motion and stochastic calculus.
Second edition.
Graduate Texts in Mathematics, 113. Springer-Verlag, New York, 1991. xxiv+470 pp. ISBN: 0-387-97655-8 MR1121940 (92h:60127)
- Knight, Frank B. On the path of an inert object impinged on one side by a Brownian
particle.
Probab. Theory Related Fields 121 (2001), no. 4, 577--598. MR1872429 (2002i:60148)
- Lions, P.-L.; Sznitman, A.-S. Stochastic differential equations with reflecting boundary
conditions.
Comm. Pure Appl. Math. 37 (1984), no. 4, 511--537. MR0745330 (85m:60105)
- Ramasubramanian, S. A subsidy-surplus model and the Skorokhod problem in an orthant.
Math. Oper. Res. 25 (2000), no. 3, 509--538. MR1855180 (2002g:91107)
- Royden, H. L. Real analysis.
Third edition.
Macmillan Publishing Company, New York, 1988. xx+444 pp. ISBN: 0-02-404151-3 MR1013117 (90g:00004)
- Stroock, Daniel W.; Varadhan, S. R. Srinivasa. Multidimensional diffusion processes.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences], 233. Springer-Verlag, Berlin-New York, 1979. xii+338 pp. ISBN: 3-540-90353-4 MR0532498 (81f:60108)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|